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Abstract

This paper explores the application of the Cox—Ingersoll-Ross model in the
pricing of pure discount bonds, with emphasis on the estimation of interest rate
dynamics. A Kalman filter methodology is employed to estimate the model pa-
rameters from market data, specifically targeting the spot rate of interest. To
illustrate this approach, a numerical experiment is conducted in which the CIR
model is used to simulate interest rate movements and estimate the corresponding
zero-coupon bond prices across different maturities.
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1 Introduction

The term structure of interest rates relates the interest rates on debt instruments with
respect to varying dates of maturity. For example, the term structure of interest rates
can help explain why the interest rate of a zero-coupon bond is 3.5% for a bond maturing
in one year and 5% for a bond maturing in five years. The interest rate of a zero-
coupon bond is influenced by its length to maturity; typically, longer maturities attract
higher yields due to the extended time horizon and the associated risks. Additionally,
prevailing market conditions, such as inflation expectations and economic prospects,
play a crucial role in determining these rates. In normal circumstances, investors expect
to receive greater compensation for committing their funds for a longer period, which
is reflected in the higher interest rate of the longer-maturity bond.

Recently, there has been interest in a subset of term structure models characterized
by the affine relationship between future dynamics and state variables. These models
are known as affine term structure models. Mathematically, affine refers to a linear
plus constant relationship. The primary advantage of affine term structure models
is that one can induce arbitrarily many state variables into the model and unique
closed-form solutions to the corresponding partial differential equation continue to exist.
Furthermore, the linear relationship between the instantaneous rate of interest and
the underlying state variables reduces complexity in simulating paths for the term
structure. After specifying the representation of bond prices as affine functions of
the underlying state variable, it is important to fit the parameters of the affine term
structure model. Determining the appropriate parameter estimates for a term structure
model is of utmost importance since a model with poorly specified parameters will not
provide accurate forecasts. In this project, the Kalman Filter will be utilized to estimate
parameters.



The Kalman Filter involves a set of observed system of equations called the mea-
surement system and an unobserved system of equations called the transition system.
Together, the Kalman filter uses these equations to make inferences about the un-
observed values of the state variables from the transition system by conditioning on
the observed rates from the measurement system. Lastly, the recursive inferences are
used to construct and maximize a log-likelihood function to determine the optimal pa-
rameter values. This application of the Kalman filter is particularly relevant in the
context of this project, as it allows the derivation of accurate parameter estimates for
the affine term structure model. This project sets out to model a single-factor affine
Cox-Ingersoll-Ross (CIR) process. The CIR model is used in the valuation of interest
rate derivatives since the model precludes negative interest rates if the Feller conditions
are satisfied. The CIR model is a sub-class of square-root diffusion models that can be
guaranteed to be non-negative given some condition and remain almost as tractable as
the traditional Gaussian process.

2 Preliminaries

This section presents preliminary concepts to aid the reader in understanding this
project. The setup of the problem is described, affine term structure models are intro-
duced, and the Kalman filter procedure is discussed in this section.

2.1 Cox—Ingersoll-Ross Process

The CIR model relates the instantaneous interest rate r(¢) with a Feller square-root
process with stochastic differential equation given by,

dr(t) = a(B —r(t))dt + o/r(t)dW, (1)

where W; is a standard Wiener process, « is the mean-reversion speed parameter, [3
is the mean level of the process and o is the volatility parameter. The CIR model
avoids the possibility of negative interest rates if for all positive values of o and 3, the
following condition is satisfied:

205 > o2

This is also known as the Feller condition. To understand how the CIR model avoids
negative interest rates consider the following: suppose that the instantaneous interest
rate r(t) approaches zero, the standard deviation o+/7(t) likewise becomes very small
resulting in a dampened effect of the random shock to the rate. This result in the
instantaneous interest rate being driven primarily by the drift term, which pushes to
increase the instantaneous interest rate resulting in a model that precludes negative
values.

2.2 Model Setup

A pure discount bond is a contract that pays one unit of currency at maturity. Assume
that the pure discount bond price P(t,T)) is a function of the interest rate. The bond
price function has the following form

P(t,T) = P(t,r,T). 2)
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Furthermore, given any pure discount bond price for any maturity, the spot rate of
interest for that date denoted by z(¢,T') is the continuously compounded rate of return
that generates a price of unity. This is given by
P(t T) (T—-t)z(t,T) _ 1
In (P(t T)e™~ ““T) 0,

In (=201 = —In P(¢,T),
1) = -2 20T, )

Moreover, assume that P(t,r,T) is a C™? function of its arguments (i.e. once contin-
uously differentiable in time and twice continuously differentiable with respect to the
instantaneous interest rate). Applying Ito’s lemma yields the following equation:

dP(t, T,r(t)) = Pdt + P.dr(t 0\/ )2 P,.dt
1
— Pdt+ P, [a(ﬁ - r(t))dt + a\/r(t)th} + 50 (1) Pdt

2
= {Pt +a(f—r(t)P + %@PM] dt + o+/r(t)P.dW,. (4)
The goal is to construct a self-financing portfolio comprised of a contingent claim and
the underlying asset. To achieve this feat, one must select portfolio weights to eliminate
the underlying source of uncertainty driven by the Brownian motion process. This de-
terministic portfolio must earn the equivalent risk-free rate to preclude the existence of
arbitrage opportunities in the market. Unlike the Black-Scholes option pricing formula,
the instantaneous interest rate is not an asset traded in the marketplace. To over this,
introduce two discount bonds with arbitrary maturities denoted by s; and s, and use
these two discount bonds to construct a self-financing portfolio denoted by V. Define
the portfolio weights of each bond in the portfolio as u; and uy. The scaled return on
the self-financing portfolio at each time increment is given by the weighted return of
each of the two bonds in the self-financing portfolio. Mathematically, this is given by

dV(t)  dPi(t,s)  dPyt sy)
Vi) Pt sy T Py(t,s9) (5)




Plugging in values from Equation (4) into Equation (5) yields,
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Here,
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The objective is to select weights u; and wus such that the Brownian motion term is
removed hence the uncertainty is eliminated. This results in finding values for u; and
us such that the following system holds:

U,l—l—Ug:l,

U10s,1 + U202 = 0.

A solution to this system is given by

—0s,2
U = ———— 9
' Os,1 — 05,2 ( )
up = — 2L (10)
Os,1 — 05,2

) )

Plugging in the solution obtained in Equation (9) into the equation for the dynamics
of the self-financing portfolio Equation (6) results in:

dv o —0s,2 05,1 d —05,2 Os,1
% - ,U/s,l + ,us,2 t+ Os,1 + 05,2
05,1 — 05,2 05,1 — 05,2 05,1 — 05,2 051 — 05,2

—0g Og
= (—’2/15,1 + —’1%,2) dt. (11)
- — 05,2

The self-financing portfolio V' is by specification, riskless over the interval dt because we
have eliminated the source of uncertainty driven by the Brownian motion. In order to
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avoid arbitrage opportunities, the self-financing portfolio V' must earn the risk-free rate
r(t) over each incremental period of time dt. Otherwise, consider the situation where
the portfolio earns more than the risk-free rate, then an investor could take a short
position in the risk-free asset and use the profit to simultaneously take a long position
in the self-financing portfolio hence an arbitrage opportunity exists. Thus to ensure
no arbitrage opportunities exist, the rate of return of the portfolio dVV must equate to
r(t)dt:

dVv
— =1r(t)dt
= = ()
—O0g Os
(—’2 Pog + ——— us,g> dt = r(t)dt
O0s1 — 05,2 Os1 — 052

Os,1Ms,2 — Os,2Ms,1 _ r(t)
051 — 052
Os,1Ms2 — Os2fls1 = T(t)gs,l - T(t)Us,z
0s1(pts2 —1(t)) = os2(pisy — (1))
fs2 — () psg —r(t)
05,2 Os,1

(12)

Define the market price of risk A as the standardized excess return over the risk-free
rate. Mathematically, this is given by

At = =) (13)
Ot
Returning to Equation (12), the equation states that the market price of risk must be
equal for arbitrary maturities s; and s,. As a result, the market price of risk must be
constant across all maturities. In fact, one can derive a partial differential equation
that describes the dynamics of any interest-rate contingent claim. A Feynman-Kac
representation solution is given by:

A(t) = p — (1)

P+ a(B—r(t)P + 0P, o\/r(D)P,
Iz —r(t) =) ——F5H—
P+ a(B—rt)P + 2~ gt) P = r(t)P = A(t)o\/r(t) P,
P+ (8 = (1) = MD)o /r(B)] P + @PW —r(t)P =0 (14)

2.3 Affine Term Structure Model
Consider the case where the term structure {P(¢,T),t € [0,T]} has the following form
P(t,T) — eA(t,T)—B(t,T)'r'(t)‘ (15)

where A(t) and B(t) are deterministic functions. Introduce the change of variables 7 =
T —t is the remaining time to maturity and define A(7) = A(¢,T) and B(7) = B(t,T).
Hence Equation (15) becomes,

P(7) = eAD=BOr®), (16)
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It has been shown in Chen and Scott (2003); Duan and Simonato (1999); Geyer and
Pichler (1999) that for a CIR process, A(7) and B(7) are given by

2(e7 —1)
(v+a+ ) (e —1)+2y

(v+a+\)r
2 2 2
A(r) = af In ( e ) ,

B(r) =

o2 (v +a+A)(em—1)+ 2y

where

v =/ (a4 )2+ 202 (17)

From Equation (3), the following relationship between the zero-coupon yield and the
price of a zero-coupon bond is obtained

P T) _ —A() + B(r)r(t) (18)

A6 T) = T—t T

2.4 Kalman Filter

The Kalman filter is a technique in control engineering to solve a filtering problem.
A filtering problem involves an observable stream of data that is often cluttered with
noise, and the objective is to effectively differentiate between the valuable signal and
the irrelevant noise. For example, consider a scenario where you're trying to track the
position of a moving object, such as a car, using GPS data that may be affected by
interference from buildings or weather conditions. The goal is to extract the accurate
location of the car from the disrupted data. The Kalman filter is a recursive technique
that begins this process with an initial inference, typically the unconditional mean and
variance of the state variables—quantities that describe the internal state of the sys-
tem being observed and evolve over time. From this baseline, the filter updates and
refines its predictions based on incoming observed values, continuously evaluating the
conditional mean and variance against the initial inference. This iterative updating
allows for the isolation of the signal from the noise, enabling a clearer understanding
of the system’s behavior over time. The Kalman filter proceeds to infer values of the
measurement, equation from the initial inference of the state variables. This process
involves evaluating the conditional mean and conditional variance given the initial in-
ference for the state variables. Next, as a natural progression from the initial inference,
the prediction from the measurement system leads to the acquisition of an observed
value. This observed value is crucial, as it feeds back into the process, updating our
inference of the current value of the transition system. By doing so, we maintain the
continuity inherent in this recursive process, which is consistently repeated over the
period of interest.

To implement the Kalman filter, a discrete-time state space representation must be
made. The time interval [0,77] is discretized into N subintervals where ¢; = i+ for
1 =1,2,...,n. Denote each time step as At =t; — t;_1. The measurement system can



be represented in state-space form as,

[ —A(titsy) ] [ B(titey) ]
z (tza tzl) tz —t; tz—t; Vit
2 (ti, ) “A(tot) B(tit=) Vo,
z (tiv tzn) —A(t;,tzn) B(titzy) VUnt;
L tep —1i -4 L tzy, —t; 4
A "
Alternatively,
2, = A+ Hry, + vy, (20)
where,
Vg ~ N(O, R),
[m]? 0 0
0 [ro? 0
e | 0
0 0 - [r)?

Likewise, the transition system derived from solving the CIR stochastic differential

equation analytically can be written as follows:

Ty, = 5(1 - eiaAt) + eiaAt Tty + €t; (21)
—_— T
C F
(22)

=C -+ F'r'ti71 + €, -

Here,
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0 0 &
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An outline of the Kalman filter process is detailed below. Define the filtration generated
by the measurement system F;, as,

T
Fi, = o0{z0,21,...,2i}, ti= ZN over [0, 7]

First, the initial values for the recursion must be initialized. The unconditional mean
and unconditional variance of the transition system are used. For the CIR model, the
unconditional mean is given by

]E[TI]ZE[T1|.70]:6.

Likewise, the unconditional variance is given by

0?3

var [r1] = var [ry | Fo] = 5o



Second, the measurement equation is forecasted. The conditional forecast of the mea-
surement equation is given by

Elz, | Fi | =A+HE[r, | Fi_,] .
The unconditional variance is given by
var [z, | Fi, | = Hvar[r, | By, | H' + R
Third, the error in the conditional prediction is given by
G, = 21, — E[Zti‘]'—ti,l]'

This prediction error is then used to update the inferences about the unobserved tran-
sition system. Mathematically,

E [ry,

1] =K [th

i71:| + KtiCtn

where
1

Ky, =var [ry, | ) H var [z, | Fi ],
is the Kalman gain matrix, which determines the weight given to new observations
in the updated forecast. The conditional expectation and conditional variance is also
updated,

var [ry, | Fp,) = (I — Ky H) var [re, | F, ] -

The fourth step is to forecast the unknown values of the state system in the next time
period conditioning on the updated values in the previous period. The conditional
expectation and condition variance are given by

E[Tti+1|‘Ft']:C+FE[ : ]
|.Ft] :Var[rti|.7:ti71] —Fvar[rti|.7:ti]FT+Q.

var [ tiv1

Lastly, after the values in the previous steps are obtained, the log-likelihood function
is constructed with the following form

N -1
00) = Zln [(2%)_% det (var [ry, | Fi\]) 2 P AL L @z} :

ann 2r) 1 al . .
= P 23 [ et (v [ | ) + v 1 7] 6]

=1

3 Numerical Experiment

This section implements the Kalman filter technique to estimate parameter values for
a CIR model. To demonstrate the methodology, start by simulating the interest rate
process for various maturities. Define an initial set of parameter values then use Equa-
tion (18) to generate values of for the spot rate of interest at each time step. We
consider zero-coupon bonds with four different time-to-maturities: 7 = 3/12, 6/12, 2,
and 5, representing 3 months, 6 months, 2 years, and 5 years, respectively. Figure (1)
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Zero-Coupon Rates Over Time for Different Maturities
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Figure 1: Plot of Sample Zero-Coupon Rates over Time for 3-months, 6-months, 2-
years, and 5-years time-to-maturity respectively from bottom to top

presents a plot of simulated paths over a period of 120 months (10 years) for the CIR
model across the given time-to-maturities. Next, the variables from the Kalman filter
section are defined, and a function that calculates the log-likelihood using the Kalman
filter algorithm is obtained. For each time-to-maturity, the simulation process is re-
peated 300 times, applying the Kalman filter for parameter estimation. A Newton-type
gradient method is employed to minimize the log-likelihood function, which is crucial
for parameter estimation. By minimizing this function, we enhance the model’s per-
formance, ensuring that the estimated parameters best represent the observed data.
This process leads to more reliable predictions and improved accuracy in capturing the
underlying dynamics of the interest rate process.

Afterward, the mean and standard deviation of the estimated parameters are re-
turned. A summary of the mean and standard deviation after applying the Kalman
filter technique on 300 instances of simulated CIR model paths is provided in Table (1).
The Kalman filter estimates for the mean reversion level parameter # and the volatility
parameter o are reasonably close to the actual values, with minimal standard error.
In contrast, the estimates for the mean reversion speed parameter o and the market
price of risk parameter \ are less accurate, with larger associated standard errors. This
discrepancy is consistent with the findings of Bolder (2001), who also reported large
standard errors for estimating the parameters of a CIR model using the Kalman filter.
Bolder (2001) attribute the poor estimation to the joint presence of the mean reversion
speed and market price of risk parameters in both A(7) and B(7). This situation cre-
ates identifiability issues, meaning that the model struggles to distinguish between these
two parameters because they influence the outcomes in similar ways, complicating the
process of minimizing the log-likelihood. As a result, the estimation procedure becomes
less reliable, leading to broader confidence intervals for the estimated parameters.



Parameters | Actual Value | Mean Estimate | Standard Deviation Estimate | 95% Confidence Interval
« 0.05 0.7530 1.5999 0.05 € (-2.3828, 3.8888)
I} 0.10 0.1282 0.5002 0.10 € (-0.8522, 1.1086)
o 0.075 0.0448 0.1138 0.075 € (-0.1783, 0.2678)
A -0.40 -0.1065 1.4477 -0.40 € (-2.9440, 2.7310)

Table 1: Table of Mean and Standard Deviation Estimate for Numerical Experiment
along with the 95% Confidence Interval
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