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Chapter 1: Preliminary Concepts

I Links Between SDEs and PDEs

A stochastic differential equation (SDE) together with it’s initial condition determines a
diffusion process. This can be used to define a deterministic function of space and time in
two distinct ways:

• By considering the expected value of some future payoff as a function of the initial
position and time

• By considering the probability of being in a certain state at a given time, given knowl-
edge of the initial state and time.

The two viewpoints are the dual problem of one another. Specifically, the evolving proba-
bility density solves the forward Kolmogorov equation, which is the adjoint of the backward
Kolmogorov equation.

Backward Kolmogorov Equation (Kohn, 2011; Gardiner, 2004): Suppose y(t) solves the
scalar SDE

dy = f(y, s)ds+ g(y, s)dWs

and let
u(x, t) = Ey(t)=x[Φ[y(T )]]

be the expected value of some payoff Φ(·) at maturity T given y(t) = x. Then u solves

ut + f(x, t)ux +
1

2
[g(x, t)]2uxx = 0.

This PDE is the backward Kolmogorov equation. Intuitively, the backward Kolmogorov
equation describes how the expected value of a future payoff Φ(y(T )) depends on your current
location x and current time t. If you want to compute the expected payoff of a stochastic
process that starts at position x at time t, then this expected value u(x, t) evolves backward
in time according to the backward Kolmogorov equation. Suppose we are interested in the
discounted final payoff with the form

u(x, t) = Ey(t)=x

[
e−

∫ T
t b(y(s),s)dsΦ(y(T ))

]
for some specified function b(y), typically the interest rate. Then u solves

ut + f(x, t)ux +
1

2
[g(t, x)]2uxx − b(x, t)u = 0. (1)

The backward Kolmogorov equation is a special case of the backward parabolic PDE that
the Feynman-Kac formula gives a probabilistic representation for.
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Vector-Valued Diffusion: Suppose y solves a vector-valued SDE

dyi = fi(y, s)ds+
∑
j

gi,j(y, s)dWj

where each component of W is an independent Brownian motion. Then,

u(x, t) = Ey(t)=x[Φ(y(T ))]

solves
ut + Lu = 0.

Here, the infinitesimal generator of the diffusion process y(s) is given by

Lu(x, t) =
∑
i

fi
∂u

∂xi

+
1

2

∑
i,j,k

gi,kgj,k
∂2u

∂xi∂xj

.

A straightforward application of the multidimensional Ito’s lemma results in the multidi-
mensional Feynman-Kac given by

ut + Lu− bu = 0.

Forward Kolmogorov Equation: The solution of the SDE is a Markov process, so it has
a well defined transition probability p(·, s;x, t) is the probability density of the state at time
s given that it started at position x at time t. To describe a Markov process, p must satisfy
the Chapman–Kolmogorov equation

p(z, s;x, t) =

∫
Rn

p(z1, s1;x, t)p(z, s; z1, s1)dz1

for any t < s1 < s. This equation expresses the idea that the probability of transitioning
from state x at time t to state z at a later time s can be computed by considering all the
possible intermediate states z1 the process could pass through at some intermediate time
s1. The total probability of this happening is obtained by integrating over all such possible
intermediate states z1 ∈ Rn. Let ρ0(x) be the probability density of the state at time t. The
probability density as a function of z for any time s > t is given by

ρ(z, s) =

∫
Rn

p(z, s;x, t)ρ0(x)dx. (2)

The important fact about transition probaibilities is that it solves the forward Kolmogorov
equation in s and z

−ps −
∑
i

∂

∂zi
[fi(z, s)p] +

1

2

∑
i,j,k

∂2

∂zi∂zj
[gi,k(z, s)gj,k(z, s)p] = 0 (3)

with initial condition
p = δx(z) at s = t.
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Using the inifinitesimal generator notation, the forward Kolmogorov equation can be written
as

−ps + L∗p = 0

where

L∗p = −
∑
i

∂

∂zi
(fip) +

∑
i,j

∂2

∂zi∂zj
(
1

2
(ggT )i,jp)

Nonlinear Feynman–Kac Formula. The classical Feynman–Kac formula provides a prob-
abilistic representation for the solution of certain linear parabolic partial differential equa-
tions. This framework can be extended to the nonlinear setting, where the PDE includes a
nonlinear dependence on the solution and its gradient. Consider the nonlinear PDE

∂

∂t
u(t, x) + Lu(t, x) + f(t, x, u(t, x), Dxu(t, x)) = 0, u(T, x) = g(x), (4)

where L is a second-order differential operator defined by

Lu(t, x) = 1

2
Tr

[
σ(x)σ(x)⊤D2

xu(t, x)
]
+ µ(x)⊤Dxu(t, x),

and Dxu(t, x), D
2
xu(t, x) are the gradient and Hessian of u with respect to the spatial variable

x. The function f introduces a nonlinearity in u and its derivatives. Let Xt be the solution
to the FSDE

dXt = µ(Xt) dt+ σ(Xt) dWt, X0 = x,

and define Yt := u(t,Xt). Then, by applying Itô’s formula to u(t,Xt), we obtain the dynamics
of Yt:

dYt =

(
∂u

∂t
(t,Xt) + Lu(t,Xt)

)
dt+Dxu(t,Xt)σ(Xt) dWt

= −f(t,Xt, Yt, Zt) dt+ Zt dWt,

where Zt := Dxu(t,Xt)σ(Xt). This BSDE is solved backward in time with terminal condition
YT = g(XT ).

II Backward SDE

Recall that a BSDE has the following form:

−dYt = f(t, Yt, Zt)dt− ZtdWt

YT = ξ
(5)

or equivalently,

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs. (6)

Here, the random variable ξ : Ω → Rd is Ft measurable.
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Definition II.1. A continuous solution of a BSDE is a pair (Y, Z) = (Yt, Zt)t∈[0,T ] such that
Y is a continuous adapted Rd-valued process and Z is a predictable Rn×d-valued process with∫ T

0
|Zt|2ds < ∞,P− a.s. that satisfies the BSDE. The solution (Y, Z) is square integrable if

(Y, Z) ∈ H2,d
T ×H2,n×d

T .

Definition II.2. The driver f is standard if f(·, 0, 0) ∈ H2,d
T and f(ω, t, y, z) is uniformly

Lipschitz in (y, z). This latter property means that ∃C > 0 such that dP⊗ dt a.s.,∣∣f (·, y1, z1)− f (·, y2, z2)
∣∣ ≤ C

(
|y1 − y2|+ |z1 − z2|

)
∀ (y1, z1) , (y2, z2) ∈ Rd × Rn×d

If in addition ξ ∈ L2,d
T , we say that the data (f, ξ) are standard data.

If (f, ξ) are the standard data, then there exists a unique continuous square-integrable
solution to the BSDE (El Karoui et al., 1997b).

III Forward Backward SDE

Typically, a coupled FBSDE is referred to as an FBSDE, while a decoupled FBSDE is referred
to as a BSDE. A Forward Backward SDE (FBSDE) has the following form

Yt = ξ +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs (7)

where the underlying process Xs is a diffusion process satisfying the following forward SDE

dXs = b(Xs)ds+ σ(Xs)dWs.

For a FBSDE to have a unique solution, the following conditions must be satisfied (El Karoui
et al., 1997b):

1. The coefficients b and σ in the F-SDE must be uniformly Lipschitz continuous with
respect to x. Let there exist a constant C ∈ R+such that for all t ≥ 0 within the
domain and any x, x′ in Rd, the following inequalities hold:∣∣∣b(t, x)− b

(
t, x′)∣∣∣+ ∣∣∣σ(t, x)− σ

(
t, x′)∣∣∣ ≤ C

(
1 +

∣∣x− x′∣∣) ,

the coefficients b and σ are then considered Lipschitz continuous if this is met.

2. The coefficient b and σ must satisfy a linear growth condition. Let there exist another
constant D such that for any (t, x) following condition is met:

|σ(t, x) + b(t, x)| ≤ D(1 + |x|).

3. The driver function f (t,Xt, Yt, Zt) is uniformly Lipschitz continuous with respect to
the pair (Y, Z).

4. ξ ∈ L2
T

(
Rd

)
, and (f(t, 0, 0, 0))t≤T ∈ H2

T

(
Rd

)
.
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IV Reflected FBSDE

Reflected Backward Stochastic Differential Equations (RBSDEs) (El Karoui et al., 1997a;
Karoui et al., 1997) extend standard BSDEs by adding a reflection term that keeps the
solution above a given barrier. This is useful for modeling problems with early exercise
features, such as American options. In the case of American options, the barrier is the
option’s payoff at each time t, denoted by g(t,Xt). The reflection term increases only when
the solution Yt reaches this barrier, ensuring that Yt ≥ g(t,Xt) at all times. For a given
terminal condition ξ and driver function f , a RBSDE is given by

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs+KT −Kt, 0 ≤ t ≤ T. (8)

Here, (Yt, Zt) are Ft adapted processes and Kt is continuous and increasing. The process Kt

plays a role in enforcing the constraint Yt ≥ g(t,Xt). It increases only when Yt = g(t,Xt),
meaning the reflection is active only when needed. This ensures that the solution stays above
the obstacle without introducing unnecessary adjustments. Mathematically, this condition
is enforced by the Skorokhod condition:∫ T

0

(Yt − g(t,Xt)) dKt = 0. (9)

This implies that Kt increases only on the set where Yt = g(t,Xt). In other words, Kt only
acts to keep Yt above the barrier and does nothing when the solution is already strictly above
it. The process Yt represents the price of the option, and the constraint Yt ≥ g(t,Xt) ensures
that the option is never valued below its payoff. The optimal stopping feature is encoded
through the minimality of the reflection term Kt, which activates only when immediate
exercise is optimal.
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Chapter 2: Deep BSDE

I Original Framework

This section is based on Güler et al. (2019) and Raissi (2018). This work is also referred
to as local DBSDE. Consider the following system of coupled forward-backward stochastic
differential equations (FBSDEs),

dXt = µ(t,Xt, Yt, Zt) dt+ σ(t,Xt, Yt) dWt, X0 = ξ,

dYt = ϕ(t,Xt, Yt, Zt) dt+ Z⊤
t σ(t,Xt, Yt) dWt, YT = g(XT ),

(10)

where (Xt, Yt, Zt) are adapted stochastic processes. The forward process Xt represents the
state dynamics of the system (e.g., the evolution of an asset), while the backward components
(Yt, Zt) typically represent a value process (such as a derivative price) and an associated
control. This coupled FBSDE is closely related to a quasi-linear parabolic partial differential
equation (PDE) of the form

ut = f(t, x, u,Du,D2u),

with terminal condition u(T, x) = g(x), where u(t, x) is the unknown solution, interpreted
as the value function or option price at time t and state x. The PDE coefficients are related
to the FBSDE coefficients via

f(t, x, u,Du,D2u) = ϕ(t, x, u,Du)− µ(t, x, u,Du)⊤Du− 1

2
Tr

[
σ(t, x, u)σ(t, x, u)⊤D2u

]
,

(11)
where Du and D2u are the gradient and Hessian of u, respectively. This connection is a
generalization of the nonlinear Feynman–Kac formula and provides a probabilistic represen-
tation of solutions to certain nonlinear PDEs. It was shown in Gobet (2020) that under
sufficient regularity conditions, the solution of the PDE and the solution of the coupled
FBSDE are linked via

Yt = u(t,Xt), (value process / derivative price)

Zt = ∇u(t,Xt), (control process / hedging strategy).

The FSDE describes the evolution of the underlying state variable, while the BSDE encodes
the value of a contingent claim or optimal control objective, which is solved backward from
the terminal condition. In financial applications, Yt corresponds to the price of a derivative
written on the underlying state Xt, and Zt reflects the sensitivity of the price with respect
to the driving Brownian motion, which is often interpreted as the hedging strategy. Rather
than solving a high-dimensional PDE directly, one can simulate the corresponding FBSDE
and recover the solution probabilistically. This motivates the use of deep learning and
Monte Carlo methods for solving high-dimensional problems where PDE-based grid methods
become infeasible.

If the solution u(t, x) to the nonlinear PDE in Equation 11 were known, we could apply a
time-discretization method such as the Euler–Maruyama scheme to solve the corresponding
FBSDE in Equation 10. However, since the exact solution is typically unavailable, we in-
stead approximate it by parameterizing the function u(t, x) with a neural network, denoted
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Generate approximations X∆
n+1 for n = 0, 1, . . . , N − 1 using Euler-Maruyama

Use DNN ϕy(·, θ) to approximate Y ∆
n and Z∆

n using AD for each discrete time point tn

Train the parameter θ to minimize a global/local loss function

Approximate the optimal parameter θ∗ using stochastic gradient descent

Figure 1: Flowchart for Local DBSDE

uΘ(t, x), where Θ represents the set of learnable parameters. Here, the gradient ∇xu
Θ(t, x)

is calculated using automatic differentiation (AD), AD works by decomposing the neural
network into a sequence of elementary operations and then efficiently computing derivatives
using the chain rule. This allows us to obtain the hedging term Zt without manual compu-
tation of derivatives. The neural network takes the initial input (t0, X0) and produces an
estimate of Y0 = uΘ(t0, X0). The associated Z0 is computed using automatic differentiation.
With (Y0, Z0) available, we simulate the next forward state (t1, X1) using the discretized
forward SDE. The dependency of X1 on (Y0, Z0) reflects the nonlinear coupling between the
forward and backward components. This recursive procedure is repeated over the discretized
time grid until terminal time T .

Training the Neural Network: To train the neural network, we define a loss function
that measures how well the neural network approximates the solution of the BSDE. The loss
function to be minimized is given by,

min
Θ

M∑
m=1

N−1∑
n=0

| Y m
n+1(Θ)︸ ︷︷ ︸

NN Output

−Y m
n (Θ)− φ

(
tn, X

m
n , Y m

n (Θ), Zm
n (Θ)

)
∆tn︸ ︷︷ ︸

Euler Scheme Previous Time Step

−
(
Zm

n (Θ)
)T

σ
(
tn, X

m
n , Y m

n (Θ)
)
∆Wm

n︸ ︷︷ ︸
Euler Scheme Previous Time Step

|2

+
M∑

m=1

| Y m
N (Θ)− g (Xm

N )︸ ︷︷ ︸
Terminal Condition Term

|2.

The idea is to compare the output of the network at the next time step, Y m
n+1(Θ), with
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Figure 2: Plot of Θu0 as an approximation of u(t = 0, x = (100, . . . , 100)) against number
of iterations for Black-Scholes equation. Shaded area refers to mean ± SD of Θu0 over five
runs

the value predicted by the Euler scheme using information from the current time step. This
includes the current value Y m

n (Θ), the driver function φ, and the noise term involving Zm
n (Θ)

and the Brownian increment ∆Wm
n . If the network is correctly learning the solution, the

difference between these two should be small. We compute this error across all N time steps
andM simulated paths, then add an additional term to ensure that the output of the network
at the final time step, Y m

N (Θ), matches the known terminal condition g(Xm
N ). By minimizing

the total loss, the network learns the parameters Θ that give a good approximation of both
the solution over time and the correct final value.

II DNN for Gradient

This section is based on (Kapllani and Teng, 2024). Consider the following decoupled high-
dimensional FBSDE, {

Xt = x0 +
∫ t

0
a(s,Xs)ds+

∫ t

0
b(s,Xs)dWs

Yt = g(XT ) +
∫ T

t
f(s,Xs)ds−

∫ T

t
ZsdWs.

(12)

Here, Xt := (Xt, Yt, Zt) and Wt is a d-dimensional Brownian motion. By the nonlinear
Feynman-Kac, consider the semi-linear parabolic PDE

∂u(t, x)

∂t
+∇xu(t, x)a(t, x) +

1

2
Tr[bbTHessxu(t, x)] + f(t, x, u,∇xu(t, x)b(t, x)) = 0.
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Assume that the regularity conditions of the FBSDE are satisfied, then the FBSDE can be
represented P− a.s. by

Yt = u(t,Xt), Zt = ∇xu(t,Xt)b(t,Xt).

To improve the accuracy of the first- and second- order approximations of the gradient,
differential deep laerning can be used. This way, the stochastic gradient descent algorithm
incorporates explicit information about the dynamics of Zt. Applying the Malliavin deriva-
tive to the FBSDE yields a system of BSDEs,

DsXt = 1s≤t

[
b(s,Xs) +

∫ t

s

∇xa(r,Xr)DsXr dr +

∫ t

s

∇xb(r,Xr)DsXr dWr

]
,

DsYt = 1s≤t

[
∇xg(XT )DsXT +

∫ T

t

fD(r,Xr, DsXr) dr −
∫ T

t

(
(DsZr)

⊤dWr

)⊤
]
,

(13)

Here, DsXt := (DsXt, DsYt, DsZt) and fD(t,Xt, DsXt) := ∇xf(t,Xt)Ds +∇yf(t,Xt)DsYt +
∇zf(t,Xt)DsZt. The solution to this BSDE system is a pair of triples of stochastic processes
{Xt, Yt, Zt} and {(DsXt, DsYt, DsZt)} such that the system holds P− a.s.

The Euler-Maruyama gives an approximation of the Malliavin derivative as

DnX
∆
m =


1n=mb

(
tn, X

∆
n

)
, 0 ≤ m ≤ n ≤ N

DnX
∆
m−1 +∇xa

(
tm−1, X

∆
m−1

)
DnX

∆
m−1∆tm−1

+∇xb
(
tm−1, X

∆
m−1

)
DnX

∆
m−1∆Wm−1, 0 ≤ n < m ≤ N

and
DnY

∆
n = DnY

∆
n+1 + fD

(
tn, X

∆
n , DnX

∆
n

)
∆tn −DnZ

∆
n ∆Wn

An outline of the implementation of this algorithm is given by,

1. Generate approximations X∆
n+1 for n = 0, 1, . . . , N − 1 and their discrete Malliavin

derivatives DnX
∆
n , DnX

∆
n+1.

2. At each discrete time point tn, for n = 0, 1, . . . , N , use neural networks

ϕy (·; θy) : R1+d → R, ϕz (·; θz) : R1+d → R1×d, ϕγ (·; θγ) : R1+d → Rd×d

to approximate the discrete processes
(
Y ∆
n , Z∆

n ,Γ
∆
n

)
, where the network input is the

time tn ∈ R+ and the Markovian state X∆
n ∈ Rd. Namely,

Y ∆,θ
n = ϕy

(
tn, X

∆
n ; θy

)
, Z∆,θ

n = ϕz
(
tn, X

∆
n ; θz

)
, Γ∆,θ

n = ϕγ
(
tn, X

∆
n ; θγ

)
.

3. Train the parameters θ = (θy, θz, θγ) using a global differential-type loss function that
includes local terms enforcing the discretized BSDE dynamics:
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L∆(θ) := ω1L
y,∆(θ) + ω2L

z,∆(θ),

Ly,∆(θ) := E

N−1∑
n=0

∣∣∣∣Y ∆,θ
n+1 − Y ∆,θ

n + f
(
tn,X

∆,θ
n

)
∆t− Z∆,θ

n ∆Wn

∣∣∣∣2

+

∣∣∣∣Y ∆,θ
N − g

(
X∆

N

)∣∣∣∣2
]
,

Lz,∆(θ) := E

N−1∑
n=0

∣∣∣∣DnY
∆,θ
n+1 − Z∆,θ

n + fD

(
tn,X

∆,θ
n ,DnX

∆,θ
n

)
∆t− Γ∆,θ

n DnX
∆
n ∆Wn

∣∣∣∣2

+

∣∣∣∣Z∆,θ
N − gx

(
X∆

N

)
b
(
tN , X

∆
N

)∣∣∣∣2
]
,

where
DnY

∆,θ
n+1 = Z∆,θ

n+1b
−1

(
tn+1, X

∆
n+1

)
DnX

∆
n+1,

and ω1, ω2 ∈ [0, 1] with ω1 + ω2 = 1. For notational convenience:

X∆,θ
n :=

(
X∆

n , Y ∆,θ
n , Z∆,θ

n

)
, DnX

∆,θ
n :=

(
DnX

∆
n , Z∆,θ

n ,Γ∆,θ
n DnX

∆
n

)
.

4. Approximate the optimal parameters θ∗ ∈ argminθ∈Θ L∆(θ) using a stochastic gradient
descent method, and obtain the final estimated parameters θ̂. The final approximations
for the discrete processes are then given by:(

Y ∆
n , Z∆

n ,Γ
∆
n

)
:=

(
Y ∆,θ̂
n , Z∆,θ̂

n ,Γ∆,θ̂
n

)
, for n = 0, 1, . . . , N.

This method is faster and more efficient than AD.
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Chapter 3: Ideas for Future Work

1. One idea for future work could be the development of advanced stochastic correla-
tion models to enhance the pricing of high-dimensional options. As financial mar-
kets become increasingly complex, the interdependencies between multiple assets often
evolve dynamically, especially during periods of market stress. Current models that
rely on static correlations may fail to accurately capture these time-varying relation-
ships. By incorporating stochastic correlation structures, future research could improve
the precision of option pricing, offer better risk management tools, and provide more
realistic models for portfolio optimization.
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Chapter 4: Code
Code for implementing option pricing in 100-dimensions based on Han et al. (2018). Note

to use Python 3.9 with TensorFlow 2.10.

1 import numpy as np

2 import tensorflow as tf

3

4

5 class Equation(object):

6 """

7 Base class for defining Partial Differential Equation (PDE)-related functions.

8 This class provides a template for sampling forward Stochastic Differential Equations (SDEs),

9 defining the generator function (f_tf), and the terminal condition (g_tf).

10 """

11

12 def __init__(self, eqn_config):

13 """

14 Initialize the Equation class with configuration parameters.

15

16 Args:

17 eqn_config: An object containing configuration parameters such as:

18 - dim: Dimension of the problem.

19 - total_time: Total time horizon for the PDE.

20 - num_time_interval: Number of time intervals for discretization.

21 """

22 self.dim = eqn_config.dim # Dimension of the problem

23 self.total_time = eqn_config.total_time # Total time horizon

24 self.num_time_interval = eqn_config.num_time_interval # Number of time intervals

25 self.delta_t = self.total_time / self.num_time_interval # Time step size

26 self.sqrt_delta_t = np.sqrt(self.delta_t) # Square root of the time step size

27 self.y_init = None # Initial value for the solution (to be defined in subclasses)

28

29 def sample(self, num_sample):

30 """

31 Sample forward SDE paths. This method must be implemented in subclasses.

32

33 Args:

34 num_sample: Number of samples to generate.

35

36 Raises:

37 NotImplementedError: If the method is not implemented in a subclass.

38 """

39 raise NotImplementedError

40

41 def f_tf(self, t, x, y, z):

42 """

43 Generator function in the PDE. This method must be implemented in subclasses.

44

45 Args:

46 t: Current time step.

47 x: State variable.

48 y: Solution variable.

49 z: Gradient of the solution.

50

51 Raises:

52 NotImplementedError: If the method is not implemented in a subclass.

53 """

54 raise NotImplementedError

55

56 def g_tf(self, t, x):

57 """

58 Terminal condition of the PDE. This method must be implemented in subclasses.

59

60 Args:

61 t: Current time step.

62 x: State variable.

63
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64 Raises:

65 NotImplementedError: If the method is not implemented in a subclass.

66 """

67 raise NotImplementedError

68

69

70 class PricingDefaultRisk(Equation):

71 """

72 Nonlinear Black-Scholes equation with default risk.

73 This model is based on the PNAS paper: doi.org/10.1073/pnas.1718942115.

74 """

75

76 def __init__(self, eqn_config):

77 """

78 Initialize the PricingDefaultRisk class with specific parameters.

79

80 Args:

81 eqn_config: Configuration object containing problem parameters.

82 """

83 super(PricingDefaultRisk, self).__init__(eqn_config)

84 self.x_init = np.ones(self.dim) * 100.0 # Initial value of the asset

85 self.sigma = 0.2 # Volatility of the asset

86 self.rate = 0.02 # Interest rate

87 self.delta = 2.0 / 3 # Risk aversion parameter

88 self.gammah = 0.2 # High default intensity

89 self.gammal = 0.02 # Low default intensity

90 self.mu_bar = 0.02 # Drift term

91 self.vh = 50.0 # Threshold for high default intensity

92 self.vl = 70.0 # Threshold for low default intensity

93 self.slope = (self.gammah - self.gammal) / (self.vh - self.vl) # Slope of the piecewise linear

function

94

95 def sample(self, num_sample):

96 """

97 Generate sample paths for the forward SDE.

98

99 Args:

100 num_sample: Number of sample paths to generate.

101

102 Returns:

103 dw_sample: Brownian motion increments.

104 x_sample: Simulated asset paths.

105 """

106 dw_sample = np.random.normal(size=[num_sample, self.dim, self.num_time_interval]) * self.sqrt_delta_t

107 x_sample = np.zeros([num_sample, self.dim, self.num_time_interval + 1])

108 x_sample[:, :, 0] = np.ones([num_sample, self.dim]) * self.x_init # Initialize asset paths

109 for i in range(self.num_time_interval):

110 x_sample[:, :, i + 1] = (1 + self.mu_bar * self.delta_t) * x_sample[:, :, i] + (

111 self.sigma * x_sample[:, :, i] * dw_sample[:, :, i]) # Euler-Maruyama scheme

112 return dw_sample, x_sample

113

114 def f_tf(self, t, x, y, z):

115 """

116 Generator function for the PDE.

117

118 Args:

119 t: Current time step.

120 x: State variable.

121 y: Solution variable.

122 z: Gradient of the solution.

123

124 Returns:

125 Tensor representing the generator function value.

126 """

127 # Piecewise linear function for default intensity

128 piecewise_linear = tf.nn.relu(

129 tf.nn.relu(y - self.vh) * self.slope + self.gammah - self.gammal) + self.gammal

130 return (-(1 - self.delta) * piecewise_linear - self.rate) * y
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131

132 def g_tf(self, t, x):

133 """

134 Terminal condition for the PDE.

135

136 Args:

137 t: Current time step.

138 x: State variable.

139

140 Returns:

141 Tensor representing the terminal condition value.

142 """

143 return tf.reduce_min(x, 1, keepdims=True) # Minimum value of the state variable

144

145

146 class PricingDiffRate(Equation):

147 """

148 Nonlinear Black-Scholes equation with different interest rates for borrowing and lending.

149 This model is based on Section 4.4 of the Comm. Math. Stat. paper: doi.org/10.1007/s40304-017-0117-6.

150 """

151

152 def __init__(self, eqn_config):

153 """

154 Initialize the PricingDiffRate class with specific parameters.

155

156 Args:

157 eqn_config: Configuration object containing problem parameters.

158 """

159 super(PricingDiffRate, self).__init__(eqn_config)

160 self.x_init = np.ones(self.dim) * 100 # Initial value of the asset

161 self.sigma = 0.2 # Volatility of the asset

162 self.mu_bar = 0.06 # Drift term

163 self.rl = 0.04 # Lending interest rate

164 self.rb = 0.06 # Borrowing interest rate

165 self.alpha = 1.0 / self.dim # Weighting factor for dimensions

166

167 def sample(self, num_sample):

168 """

169 Generate sample paths for the forward SDE.

170

171 Args:

172 num_sample: Number of sample paths to generate.

173

174 Returns:

175 dw_sample: Brownian motion increments.

176 x_sample: Simulated asset paths.

177 """

178 dw_sample = np.random.normal(size=[num_sample, self.dim, self.num_time_interval]) * self.sqrt_delta_t

179 x_sample = np.zeros([num_sample, self.dim, self.num_time_interval + 1])

180 x_sample[:, :, 0] = np.ones([num_sample, self.dim]) * self.x_init # Initialize asset paths

181 factor = np.exp((self.mu_bar - (self.sigma**2) / 2) * self.delta_t) # Drift factor

182 for i in range(self.num_time_interval):

183 x_sample[:, :, i + 1] = (factor * np.exp(self.sigma * dw_sample[:, :, i])) * x_sample[:, :, i]

184 return dw_sample, x_sample

185

186 def f_tf(self, t, x, y, z):

187 """

188 Generator function for the PDE.

189

190 Args:

191 t: Current time step.

192 x: State variable.

193 y: Solution variable.

194 z: Gradient of the solution.

195

196 Returns:

197 Tensor representing the generator function value.

198 """
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199 temp = tf.reduce_sum(z, 1, keepdims=True) / self.sigma # Weighted sum of gradients

200 return -self.rl * y - (self.mu_bar - self.rl) * temp + (

201 (self.rb - self.rl) * tf.maximum(temp - y, 0)) # Nonlinear term for borrowing and lending rates

202

203 def g_tf(self, t, x):

204 """

205 Terminal condition for the PDE.

206

207 Args:

208 t: Current time step.

209 x: State variable.

210

211 Returns:

212 Tensor representing the terminal condition value.

213 """

214 temp = tf.reduce_max(x, 1, keepdims=True) # Maximum value of the state variable

215 return tf.maximum(temp - 120, 0) - 2 * tf.maximum(temp - 150, 0) # Payoff function
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