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ABSTRACT

This thesis examined how machine learning can be applied to improve tax

fraud detection in the Philippines, with the goal of helping the Bureau of Internal

Revenue (BIR) more effectively identify fraudulent activities. Traditional meth-

ods, which relied on manually reviewing financial records, were often slow and

inefficient. To address this, the study combined financial data from the BIR with

both supervised and unsupervised machine learning techniques to automate the

detection process. The methodology followed a two-stage approach: first, unsu-

pervised models such as Isolation Forest, Support Vector Machines, and K-means

clustering were used to assign preliminary fraud labels to transactions. In the

second stage, supervised learning algorithms, including logistic regression, gradi-

ent boosting, and artificial neural networks, were used to refine these labels and

improve classification accuracy. Additionally, association rule mining was em-

ployed to uncover hidden relationships between transaction attributes, providing

further insights into suspicious patterns. The results showed that the ensemble

approach, particularly the XGBoost model, achieved a 95% out-of-sample accu-

racy, demonstrating its promise for automating tax fraud detection. Overall, the

findings suggest that machine learning can significantly enhance the efficiency and

scalability of fraud detection systems.
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CHAPTER 1

INTRODUCTION

Tax fraud remains a significant challenge in the Philippines, resulting in lost

government revenue and undermining fair business practices. Traditional detec-

tion methods, which rely on manual evaluation, are often slow and ineffective. Al-

though machine learning offers potential for identifying fraudulent activities, the

Bureau of Internal Revenue (BIR) has faced difficulties in adopting automated

detection due to data quality issues.

This project aims to improve tax fraud detection by integrating financial

records from the BIR. By analyzing these datasets, we seek to identify incon-

sistencies and automate the currently manual process of detecting potential fraud.

Using both supervised and unsupervised machine learning techniques, the project

focuses on developing a robust model capable of accurately identifying fraudulent

entities. This model is intended to help the BIR strengthen tax compliance and

enhance enforcement efficiency.

1.1. Tax Fraud in Philippines

The Bureau of Internal Revenue (BIR)1 is the Philippine government agency

responsible for assessing and collecting all national internal revenue taxes, fees,

and charges. Operating under the Department of Finance, the BIR enforces tax

laws to ensure compliance and manage the country’s revenues.

BIR plays a key role in combating tax evasion by overseeing tax collection

and enforcement, and ensuring that corporations and individuals accurately re-

port their taxable income. Detecting fraudulent activities, however, often re-

quires auditing financial statements and other corporate disclosures. These records

can reveal inconsistencies such as misstated revenues, unreported subsidiaries, or

undisclosed ownership, which may indicate fraudulent tax practices. By analyzing
1https://www.bir.gov.ph

https://www.bir.gov.ph
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financial data alongside tax records, BIR can more effectively identify discrep-

ancies and detect companies involved in tax evasion schemes. This data-driven

approach helps uncover hidden financial manipulation, improve risk assessment,

and strengthen enforcement efforts.

1.2. Machine Learning Models

Machine learning (ML) models are algorithms that learn from data to make

predictions or uncover patterns without being explicitly programmed. ML models

are commonly categorized as supervised, unsupervised, or reinforcement learning

(Murphy, 2012). This paper focuses on supervised and unsupervised approaches.

Supervised learning uses labeled data, where each input is paired with a known

output. The model learns to generalize from these examples, aiming to predict

outcomes for new, unseen data by minimizing the difference between its predictions

and actual results. In contrast, unsupervised learning works with unlabeled data,

seeking to discover hidden structures, groupings, or anomalies without predefined

outputs. We employ both supervised and unsupervised machine learning algo-

rithms to predict tax evasion, as they offer complementary strengths. Supervised

models are effective when historical cases of tax evasion are available, enabling

the identification of features linked to fraudulent activity. Unsupervised models

are valuable when labeled data is limited, as they can reveal unusual patterns or

outliers in taxpayer behavior that may signal potential fraud. Combining these

methods enhances the accuracy and efficiency of tax evasion detection.

1.3. Relevant Literature

Many studies have investigated how machine learning can help detect tax fraud,

but few have used a combined, or ”ensemble,” approach that brings together sev-

eral different models for this specific purpose. Most existing research has focused

on using single machine learning techniques or combining just two types. super-

vised (which learns from labeled examples) and unsupervised (which finds patterns

in unlabeled data). However, a comprehensive framework that blends multiple ma-

chine learning methods to boost accuracy and reliability has not yet been fully

explored.
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Recent progress in machine learning has made it easier to spot suspicious pat-

terns in large and complex financial datasets. For example, Murorunkwere et al.

(2023) compared several supervised machine learning models, such as artificial

neural networks (which mimic how the brain processes information), logistic re-

gression (a method for predicting outcomes), decision trees, random forests, and

XGBoost, and found that artificial neural networks were the most reliable for pre-

dicting tax fraud. Similarly, Shujaaddeen et al. (2024) developed a hybrid model

that combines both supervised and unsupervised learning, and tested it using

data from the Yemeni Tax Authority. Their approach was more efficient than

previous methods, reducing the time and cost needed to detect tax fraud. Other

researchers have focused on specific techniques. For instance, Baghdasaryan et

al. (2022) used gradient boosting (a method that builds a series of simple mod-

els to improve predictions) to develop a fraud detection model, identifying key

warning signs such as past fraud, audits, and certain economic activities. Be-

cause labeled data, where past fraud cases are clearly identified, can be scarce,

de Roux et al. (2018) proposed an unsupervised approach that looks for unusual

patterns in tax returns. This method helped reduce the number of audits needed

while still catching previously undetected fraud. In another study, Andrade et

al. (2021) trained several models, including K-Nearest Neighbors (which classi-

fies data based on similarity), Random Forest (which combines many decision

trees), Support Vector Machine (which finds the best boundary between classes),

and Neural Networks, using financial and tax data. Random Forest performed

best, correctly identifying fraudulent entities with an average accuracy of 92.98%.

Ariyibi et al. (2024) showed that artificial intelligence techniques, including deep

learning (which uses complex neural networks) and natural language processing

(which analyzes text), can improve fraud detection rates by up to 85% compared

to traditional rule-based methods. However, these advances also bring challenges,

such as ensuring data quality, protecting privacy, and keeping models up to date.

Careful oversight is needed to maintain fairness and transparency in tax adminis-

tration. Finally, Matos et al. (2020) explored ways to select the most important

features, or indicators, for detecting fraud. Using data from Brazil, they analyzed

relationships between different warning signs, built a network to visualize these
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connections, and used a centrality measure to find the most relevant features for

identifying potential fraudsters.

1.4. Objectives of the Study

This study aims to enhance tax fraud detection by applying a range of ma-

chine learning techniques to classify transactions and their counterparties as either

fraudulent or non-fraudulent, using ghost receipt data. In addition, it seeks to un-

cover connections between entities that may signal a higher risk of fraudulent

activity. The results from these two analyses will be combined in a traffic-light

model, providing the BIR with a prioritized list of entities for further investigation

or audit.

The first objective is to develop models that can accurately classify entities

based on their likelihood of engaging in fraudulent behavior. This involves training

predictive models on historical ghost receipt data, using features such as transac-

tion patterns, counterparty relationships, and financial indicators. By leveraging

both supervised and unsupervised machine learning techniques, the study aims

to improve the accuracy and reliability of fraud detection. Multiple algorithms,

including decision trees, neural networks, and gradient boosting, will be combined

in an ensemble approach to maximize classification performance. The second ob-

jective is to identify entities that are closely linked to fraudulent transactions,

which may indicate their involvement in tax fraud. To achieve this, the study will

use association analysis, including network analysis and clustering methods, to

reveal hidden relationships and high-risk groups within the data. Together, these

approaches are designed to provide actionable insights for the BIR, supporting

more effective risk assessment and targeted enforcement.

1.5. Scope and Limitations

This study uses a variety of machine learning models to detect fraudulent

entities and conducts a separate association analysis to identify related risks. Al-

though these tasks are conceptually connected, they are carried out independently,

which may result in inconsistencies between the classification outcomes and the

patterns revealed by association analysis. While this separation streamlines the
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methodology, it may also miss important interactions between fraudulent behavior

and its broader network of relationships.

The dataset is composed of entities previously flagged as fraudulent under

Philippine tax law. Consequently, the model’s performance is closely tied to this

specific legal context, and results may differ if applied elsewhere. Although the

dataset includes confirmed cases of fraud, entities labeled as non-fraudulent are

assumed to be compliant, which could introduce bias, some fraudulent entities

may be incorrectly classified as non-fraudulent, affecting the model’s reliability.

Additional challenges include data imbalance and potential selection bias, which

may limit the generalizability of the findings. Future research should consider

using unsupervised or semi-supervised approaches to further validate and refine the

models, and incorporate data from other jurisdictions to improve their robustness

and applicability.

1.6. Method Overview

To identify potential cases of tax fraud, the BIR typically conducts lengthy

and resource-intensive audits. Given limited capacity, efficiently managing these

resources is a significant challenge. This capstone project seeks to enhance current

systems by introducing a traffic light model, which integrates the outputs of two

independent analyses: a fraud detection model and an association analysis model.

The traffic light model provides the BIR with a prioritized list of entities for further

investigation, helping to focus audit efforts where they are most needed.

Detecting fraud in financial transactions is difficult due to the rarity and con-

stantly changing nature of fraudulent activities. To address this, the project em-

ploys a two-stage machine learning approach that leverages both unsupervised and

supervised techniques. In the first stage, unsupervised models, such as Isolation

Forest, Support Vector Machines, and K-means clustering, are used for pseudo-

labeling, assigning preliminary labels to transactions that lack explicit fraud in-

dicators. In the second stage, these pseudo-labels are used as ground truth to

train supervised models, including logistic regression, gradient boosting, and arti-

ficial neural networks, which classify transactions as fraudulent or non-fraudulent.

Because many real-world datasets lack explicit fraud labels, preprocessing steps in-
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clude feature engineering to extract relevant indicators such as transaction amount,

frequency, counterparty relationships, and temporal patterns. The dataset is then

split into training and test sets to ensure reliable evaluation of model performance.

Beyond classification, this thesis incorporates association rule mining to un-

cover hidden patterns and relationships in transaction data. While classifica-

tion models predict the likelihood of fraud, association rule mining identifies co-

occurring behaviors and anomalies such as frequent transactions between certain

entities or unusual transaction patterns that may signal fraudulent activity. This

approach adapts to evolving fraud tactics without requiring frequent retraining

and offers greater transparency, though it requires careful rule selection to avoid

irrelevant or misleading patterns. By integrating association analysis with classi-

fication, the system becomes more robust and adaptive, providing the BIR with

actionable insights for risk assessment and targeted enforcement.

1.6.1. Pseudolabelling

Once the data is prepared, the pseudolabelling phase addresses the lack of

reliable labels by applying unsupervised learning models. This phase uses three

approaches: Isolation Forest, Support Vector Machines in a one-class setting, and

k-means clustering. In this context, the one-class SVM models typical transaction

behavior and identifies anomalies by drawing a boundary around the majority

of normal data points. Similarly, Isolation Forest and k-means clustering detect

outliers and group transactions based on their similarity. These unsupervised

techniques generate pseudolabels by assigning each transaction a tentative sta-

tus of “fraudulent” or “non-fraudulent,” depending on how far it deviates from

established patterns. Each model is set to divide the data into two groups, aim-

ing to separate legitimate from potentially fraudulent transactions. To determine

which group corresponds to legitimate or fraudulent activity, an initial analysis

is performed using data with known labels. The group containing more known

legitimate transactions is labeled as legitimate, while the group with more known

fraudulent transactions is labeled as fraudulent. If both groups are predominantly

legitimate or fraudulent, further analysis is conducted to clarify the classification.

Although these pseudolabels are not perfect, they provide a valuable foundation
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for training more accurate supervised models in the next stage.

1.6.2. Classification

After provisional labels are assigned through pseudolabeling, the process ad-

vances to supervised learning. The pseudolabeled dataset is treated as if it were

fully annotated, allowing the use of several supervised algorithms to improve clas-

sification accuracy. Logistic regression is used as a baseline model for binary

classification, providing interpretable results and insights into the influence of

individual features. More advanced models, such as XGBoost, are included to

capture complex, non-linear relationships in the data. Artificial Neural Networks

are also employed for their ability to learn intricate patterns that may indicate

subtle forms of fraud. Random forests, which aggregate the predictions of multi-

ple decision trees, are used to further enhance predictive performance. To max-

imize accuracy and robustness, an ensemble learning approach is adopted. This

involves combining the predictions of logistic regression, XGBoost, ANNs, and

random forests using stacking and weighted averaging methods. By integrating

the strengths of each model, the ensemble approach reduces the risk of overfitting

and ensures that the final fraud detection system benefits from both interpretable

and highly expressive models.

The two-step approach, pseudolabeling followed by classification, offers flexi-

bility and depth. Generating pseudolabels first addresses the common challenge of

missing or unreliable labels in fraud datasets and allows for the discovery of hid-

den patterns that might be missed with only manually annotated labels. In the

supervised learning phase, using a variety of models ensures that different algorith-

mic strengths are leveraged to improve detection accuracy. However, this method

has limitations. The reliance on unsupervised techniques to generate pseudolabels

introduces some uncertainty, as these provisional labels may include misclassifica-

tions that could affect the performance of the supervised models. Additionally, the

two-stage approach assumes that the patterns identified during pseudolabeling are

directly applicable to the classification task, and any discrepancies between these

stages could lead to inconsistencies in the final fraud predictions. In summary,

k-means clustering, one-class SVM, and isolation forests are used for pseudolabel
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generation, while supervised models include logistic regression, XGBoost, ANNs,

and random forests. The ensemble strategy aims to maximize fraud detection

accuracy and maintain stability across different data distributions by combining

the strengths of diverse models.

1.6.3. Association Rule Mining

In addition to classification, this capstone used association rule mining to un-

cover hidden relationships and patterns within the data. While classification pre-

dicts specific outcomes (e.g., fraudulent vs. non-fraudulent transactions), associ-

ation rule mining complements this by identifying co-occurrence patterns and de-

pendencies among variables. This approach is especially valuable for exploratory

data analysis, offering actionable insights into the structure and behavior of the

dataset. The process begins by detecting frequent combinations of transaction

attributes, which are then evaluated for statistical significance. A key challenge

in fraud detection is distinguishing meaningful patterns from coincidental corre-

lations, given the diversity and complexity of financial transactions. To address

this, association rule mining employs statistical measures to assess the strength

and relevance of detected patterns, helping to reveal behavioral anomalies such

as sudden spikes in transaction volume or repeated interactions with unverified

merchants.

A major advantage of association rule mining is its adaptability to evolving

fraud tactics without frequent model retraining. As fraudsters change their meth-

ods, rule-based approaches enable the continuous discovery of new relationships

between transactional features, supporting ongoing investigative and preventive

efforts. Additionally, the transparency of association rules offers greater inter-

pretability compared to black-box machine learning models. However, this flex-

ibility can result in an overwhelming number of rules, many of which may be

redundant or irrelevant. Effective rule selection, validation, and domain exper-

tise are essential to ensure that only the most meaningful associations inform

fraud detection. Despite its strengths, association rule mining is most effective

when integrated with other analytical techniques. While it can highlight suspi-

cious co-occurrences, it does not directly classify transactions as fraudulent or
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non-fraudulent, this requires further validation through supervised learning or

anomaly detection. Moreover, it assumes that historical transaction patterns are

indicative of future fraud, which may not always hold true. By combining associ-

ation rule mining with classification-based methods, a more robust and adaptive

fraud detection framework can be established, leveraging both structured patterns

and predictive modeling to enhance detection accuracy.

1.7. Organization of the Manuscript

This thesis is structured as follows: Chapter 2 introduces the preliminary con-

cepts and theoretical frameworks that underpin the study. Chapter 3 reviews the

reference papers and outlines their relevance to the thesis. Chapter 4 details the

experimental implementation, while Chapter 5 presents and discusses the results.

Finally, Chapter 6 provides the conclusion and summarizes the key findings.
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CHAPTER 2

PRELIMINARIES

In this capstone project, we employ XGBoost, Artificial Neural Networks

(ANN), and Logistic Regression for supervised learning tasks. XGBoost’s en-

semble approach enhances predictive accuracy, ANN captures complex nonlinear

patterns, and Logistic Regression offers interpretability for classification. For un-

supervised learning, we utilize k-means clustering to group similar cases, Support

Vector Machines (SVM) to detect outliers in high-dimensional spaces, and isola-

tion forests to identify anomalies and underlying structures in taxpayer behavior.

Additionally, Principal Component Analysis (PCA) is applied for dimensionality

reduction, with its outputs serving as inputs to the aforementioned models, as

described in the methodology section. This study also incorporates elements of

Benford’s analysis, a widely used technique in financial fraud detection. To fur-

ther improve predictive performance, we integrate ensemble learning techniques

to combine the outputs of individual models. The following sections provide an

overview of the theoretical foundations underlying these approaches.

2.1. Benford Analysis

Benford analysis examines the distribution of leading digits in numerical datasets

(Benford, 1938). According to Benford’s Law, in many naturally occurring datasets,

smaller digits appear as the first digit more frequently than larger ones. Specif-

ically, the digit 1 occurs as the leading digit about 30% of the time, with the

frequency decreasing for higher digits. The probability P (d) that a number has

leading digit d (where d ∈ {1, 2, . . . , 9}) is given by the logarithmic formula:

P (d) = log10

(
1 +

1

d

)
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This distribution typically emerges in datasets that span several orders of magni-

tude and are not artificially constrained. Benford’s Law has practical applications

in anomaly and fraud detection, as deviations from the expected digit distribu-

tion can indicate data manipulation or irregularities (Nigrini, 2012). However, it

is important to note that not all datasets conform to Benford’s Law. Datasets

with inherent limits, such as those involving assigned numbers, fixed ranges, or

human-generated data, may not exhibit the expected logarithmic pattern.

2.2. Backpropagation

Most machine learning models uncover complex, often nonlinear relationships

in data by minimizing a loss function, which quantifies the difference between pre-

dicted and actual values. This minimization is typically achieved using gradient

descent, an iterative optimization algorithm that updates model parameters in the

direction that reduces the loss. For complex models, especially neural networks,

finding a closed-form solution to this optimization problem is infeasible due to

the high dimensionality and nonlinearity of the loss surface. The backpropagation

algorithm addresses this challenge by efficiently computing gradients of the loss

function with respect to each model parameter using the chain rule of calculus

(Rumelhart et al., 1986). Backpropagation consists of two main steps: the for-

ward pass and the backward pass (Bengio, 2016). In the forward pass, input data

is propagated through the network to compute intermediate activations and the

final output. In the backward pass, the algorithm calculates the gradients of the

loss with respect to each parameter by propagating errors backward through the

network. These gradients are then used to update the parameters via gradient de-

scent. Despite its effectiveness, gradient-based optimization can encounter issues

such as getting stuck in local minima, slow convergence, or instability due to in-

appropriate learning rates. Careful tuning and advanced optimization techniques

are often required to address these challenges and ensure effective training.

2.3. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique used to reduce

the dimensionality of data by identifying key directions (principal components)
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that capture the most variance (Bishop, 2006). Given a data matrix X ∈ Rn×p,

where each of the n rows is an observation and each of the p columns is a variable,

PCA finds new orthogonal axes that maximize the variance of the projected data

(Jolliffe & Cadima, 2016). For simplicity, we assume the data is centered (mean

zero for each variable); if not, centering can be performed as a preprocessing step.

PCA seeks an orthonormal basis {v1, . . . ,vp} for Rp such that the first vector

v1 captures the largest variance, the second vector v2 captures the next largest

variance orthogonal to v1, and so on. Formally, the kth principal component is

found by solving:

vk = argmax
‖v‖=1,v⊥{v1,...,vk−1}

v>Σv, where Σ =
1

n− 1
X>X.

Here, ‖ · ‖ denotes the Euclidean norm, and orthogonality is enforced with respect

to previously found components.

By the spectral decomposition theorem, the optimal directions vk are the eigen-

vectors of the covariance matrix Σ, with corresponding eigenvalues λ1 ≥ λ2 ≥

· · · ≥ λp. The variance explained by the kth principal component is λk, and the

total variance in the data is:

tr(Σ) =

p∑
k=1

λk.

2.4. Apriori Association Rule Mining

The Apriori algorithm is a method for mining association rules and discovering

frequent patterns in large transactional datasets (Agrawal & Srikant, 1994). Its

primary goal is to identify itemsets that commonly occur together in transactions

and to generate association rules that reveal hidden relationships among these

items.

Consider a dataset of transactions D = {T1, T2, . . . , Tm}, where each trans-

action Tj is a subset of a set of items I = {i1, i2, . . . , in}. An itemset X ⊆ I

is a group of items that may appear together in one or more transactions. The

frequency of an itemset X is measured by its support, defined as the proportion
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of transactions containing X:

support(X) =
|{Tj ∈ D : X ⊆ Tj}|

|D|

where | · | denotes set cardinality.

Apriori operates iteratively, first identifying all itemsets that meet a minimum

support threshold σ, ensuring only frequent itemsets are considered. The algo-

rithm’s efficiency is rooted in the Apriori property: if an itemset X is frequent,

then all of its subsets must also be frequent. This property enables effective prun-

ing of the search space, as any itemset with an infrequent subset can be immedi-

ately discarded. After identifying frequent itemsets, Apriori generates association

rules of the form X ⇒ Y , where X and Y are disjoint itemsets and X ∪ Y ⊆ I.

The strength of a rule is evaluated using two key metrics: confidence and lift.

Confidence measures the conditional probability that Y appears in a transaction

given X is present:

confidence(X ⇒ Y ) =
support(X ∪ Y )

support(X)

Lift assesses how much more likely Y is to occur with X than would be expected

by chance:

lift(X ⇒ Y ) =
confidence(X ⇒ Y )

support(Y )

Rules that meet minimum thresholds for confidence (γ) and lift (λ) are retained

as strong rules. These rules provide valuable insights into item co-occurrence and

can be applied in areas such as market basket analysis and fraud detection. The

Apriori algorithm’s pruning mechanism, based on the Apriori property, makes it

highly efficient for large-scale association analysis.

2.5. Unsupervised Models

Unsupervised machine learning refers to techniques that analyze unlabeled

data to uncover hidden patterns, structures, or relationships without predefined

outputs. Unlike supervised learning, which relies on labeled data for prediction

tasks, unsupervised learning explores the intrinsic organization of data using meth-
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ods such as clustering, dimensionality reduction, and anomaly detection. This

approach is especially valuable when labeled data is scarce, making it ideal for

discovering insights, segmenting datasets, or identifying unusual behaviors. In

contrast, supervised learning is better suited for tasks with clear input-output

mappings, such as classification and regression.

Mathematically, unsupervised learning can be formulated as an optimization

problem. Given a dataset X = {x1, x2, . . . , xn} ⊆ Rd with no labels, the goal is to

find a function f : Rd → S that captures underlying structure in the data. The

nature of S depends on the specific task: for dimensionality reduction, S = Rc

with c < d; for clustering, S is a set of cluster assignments.

The learning process typically involves minimizing a loss function tailored to

the task:

min
f∈F

L(f(X))

where F is the set of allowable models or functions, and L is a predefined loss

function. For example, in clustering, L might represent the within-cluster variance.

This section provides a general overview of unsupervised learning. The following

subsections will discuss the specific models applied in this capstone project.

2.5.1. Support Vector Machines

Support Vector Machines (SVM) are powerful supervised learning algorithms,

particularly effective in high-dimensional spaces and in cases where the number

of features exceeds the number of samples (Cristianini & Shawe-Taylor, 2000;

Cortes & Vapnik, 1995). The fundamental idea behind SVM is to find an optimal

hyperplane that separates data points of different classes while maximizing the

margin, the distance between the hyperplane and the nearest data points, known

as support vectors.

For binary classification, consider a dataset of m training examples, where

each example is a pair (xi, yi) with xi ∈ Rn representing an n-dimensional feature

vector and yi ∈ {−1, 1} the class label. SVM seeks a decision boundary of the

form:

f(x) = wTx+ b
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where w is the weight vector and b is the bias term. The objective is to maximize

the margin while ensuring correct classification, formulated as:

min
w,b

1

2
‖w‖2

subject to:

yi(w
Txi + b) ≥ 1, ∀i = 1, . . . ,m.

In practice, data is often not perfectly separable. To address this, SVM in-

troduces slack variables ξi to allow some misclassifications, resulting in the soft-

margin SVM:

min
w,b,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi

subject to:

yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, ∀i.

Here, C is a regularization parameter that balances maximizing the margin and

minimizing classification errors. A larger C emphasizes correct classification, while

a smaller C allows more flexibility for misclassification, potentially improving gen-

eralization.

When data is not linearly separable, SVM employs the kernel trick, mapping

data into a higher-dimensional space where a linear separator may exist. Instead

of explicitly computing this mapping, SVM uses a kernel function K(xi, xj) to

measure similarity in the transformed space. Common kernels include:

K(xi, xj) = xT
i xj (Linear Kernel)

K(xi, xj) = (xT
i xj + c)d (Polynomial Kernel)

K(xi, xj) = exp
(
−γ‖xi − xj‖2

)
(Radial Basis Function Kernel)

The choice of kernel function significantly affects model performance and should

be guided by the data’s structure.
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2.5.2. k-means Clustering

K-means clustering is a widely used unsupervised learning algorithm for par-

titioning a dataset into K distinct, non-overlapping clusters (Jain, 2010). Given

n data points {x1, x2, . . . , xn} in Rd, the objective is to find K cluster centroids

{µ1, µ2, . . . , µK} that minimize the total within-cluster variance. Formally, the

optimization problem is:

min
µ1,...,µK

n∑
i=1

‖xi − µci‖2, (2.1)

where ci ∈ {1, . . . , K} denotes the cluster assignment for data point xi.

The k-means algorithm proceeds iteratively as follows:

1. Initialization: Select K initial centroids, either randomly or using a heuris-

tic such as k-means++.

2. Assignment step: Assign each data point to the nearest centroid:

ci = argmin
k

‖xi − µk‖2. (2.2)

3. Update step: Recompute each centroid as the mean of all points assigned

to that cluster:

µk =
1

|Ck|
∑
i:ci=k

xi, (2.3)

where Ck is the set of points assigned to cluster k.

4. Convergence: Repeat steps 2 and 3 until cluster assignments stabilize or

centroid shifts fall below a predefined threshold.

K-means is efficient and scalable, but its performance can depend on the initial

centroid selection and the value of K.

2.5.3. Isolation Forest

Isolation Forest is an unsupervised anomaly detection algorithm that identifies

anomalies by isolating them, rather than profiling normal data points (Liu et

al., 2008). The core principle is that anomalies are few and different, making
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them easier to isolate through recursive partitioning. The algorithm constructs an

ensemble of randomly generated binary trees, known as isolation trees, to partition

the data.

The construction of each isolation tree proceeds as follows:

1. Randomly select a feature from the dataset.

2. Randomly choose a split value within the range of the selected feature.

3. Recursively partition the data based on the split until a stopping criterion

is met (e.g., a single data point in a node or a maximum tree depth).

Each data point is assigned an isolation depth, defined as the path length from

the root to the terminating leaf node. Since anomalies are more susceptible to

isolation, they tend to have shorter average path lengths across the ensemble of

trees. The anomaly score for a data point x is computed as:

s(x, n) = 2−
E(h(x))

c(n) , (2.4)

where E(h(x)) is the average path length of x over all trees, and c(n) is the average

path length of unsuccessful searches in a binary search tree of size n, given by:

c(n) = 2H(n− 1)− 2(n− 1)

n
,

with H(i) denoting the i-th harmonic number. Points with shorter average path

lengths (i.e., higher anomaly scores) are more likely to be anomalies. Isolation

Forest is efficient and effective for high-dimensional datasets, as it does not rely

on distance or density measures and scales well with large data.

2.6. Supervised Models

Consider a set of covariates X = {x1, . . . , xN} ∈ X and a response variable

Y ∈ Y . The objective of supervised learning is to learn a function F ∗(x) that

approximates the true underlying relationship F (X) : X → Y , based on a training

dataset {(Xi, Yi)}Ni=1 where both covariates and responses are observed.
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The optimal function F ∗ is chosen to minimize the expected value of a loss

function L(Y, F (X)) with respect to the joint distribution of (X,Y ). Formally,

F ∗ = argmin
F

EX,Y [L(Y, F (X))] , (2.5)

where EX,Y denotes the expectation over the joint distribution of X and Y . This

can also be expressed as:

F ∗ = argmin
F

EX

[
EY |X [L(Y, F (X)) | X]

]
. (2.6)

A commonly used loss function is the mean squared error (MSE), defined as

L(Y, F (X)) = (Y − F (X))2, especially in regression tasks. The choice of loss

function depends on the specific problem and learning objective.

2.6.1. Boosting and Weak Learning Algorithms

Boosting is a powerful ensemble technique that addresses challenging machine

learning problems by combining multiple weak learners to form a highly accurate

predictor (Schapire, 1990). The core idea is to iteratively apply a weak learning

algorithm to modified versions of the training data, extracting a sequence of simple

models (weak hypotheses) that, when aggregated, yield a strong overall model.

Given a training set

{(x1, y1), (x2, y2), . . . , (xn, yn)}

where each xi ∈ X is an input instance and yi ∈ Y is its corresponding label,

boosting aims to approximate the true underlying function F (x) by an ensemble

of the form

FM(x) =
M∑

m=1

βmhm(x),

where hm(x) are base (weak) learners, βm ∈ R are their associated weights, and

M is the total number of boosting rounds.

The boosting process typically starts with an initial model F0(x), often a con-

stant. At each iteration m, a new weak learner hm(x) and its coefficient βm are
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chosen to minimize the empirical risk with respect to a specified loss function L:

(βm, hm) = argmin
β,h

n∑
i=1

L (yi, Fm−1(xi) + βh(xi)) , m = 1, . . . ,M. (2.7)

The ensemble model is then updated as:

Fm(x) = Fm−1(x) + βmhm(x). (2.8)

Through this iterative process, boosting focuses on instances that are harder to

predict, gradually improving the model’s accuracy by correcting the errors of pre-

vious learners.

2.6.2. Gradient Boosting Machines

While selecting the exact optimal pair (βm, hm) at each boosting step is theo-

retically appealing, it is often computationally infeasible in practice. To address

this, gradient boosting is employed when the loss function L is differentiable.

At each iteration m, instead of fully optimizing for the best base learner, gradi-

ent boosting fits hm(x) to the negative gradients (also known as pseudo-residuals)

of the loss function with respect to the current model prediction Fm−1(x). Specif-

ically, the negative gradients are computed as:

ỹi,m = − ∂L(yi, F (xi))

∂F (xi)

∣∣∣∣
F (x)=Fm−1(x)

, i = 1, 2, . . . , n.

The next base learner hm is then chosen to approximately solve:

hm = argmin
h∈H

n∑
i=1

L (ỹi,m, h(xi)) , (2.9)

where H denotes the set of possible base learners (e.g., all decision stumps, shallow

trees, or linear functions).

After fitting hm, the optimal step size βm is determined by:

βm = argmin
β∈R

n∑
i=1

L (yi, Fm−1(xi) + βhm(xi)) . (2.10)
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Finally, the model is updated as:

Fm(x) = Fm−1(x) + βmhm(x).

This iterative procedure allows gradient boosting to efficiently minimize the loss

function, leveraging the flexibility of differentiable losses and the power of weak

learners.

2.6.3. Artificial Neural Network

Artificial Neural Networks (ANNs) are computational models inspired by the

structure and function of the human central nervous system (Bishop, 2006). ANNs

are designed to detect complex, non-linear relationships in data by mimicking the

way biological neurons process and transmit information. The fundamental build-

ing block of an ANN is the artificial neuron, which receives inputs, processes them

through an activation function, and produces an output. Each neuron computes

a weighted sum of its inputs, adds a bias term, and applies a non-linear activation

function f :

Output = f

(
n∑

i=1

xiwi + b

)
, (2.11)

where xi are the input features, wi are the corresponding weights, b is the bias,

and f is the activation function (e.g., sigmoid, ReLU, or tanh).

Neurons are organized into layers: an input layer, one or more hidden layers,

and an output layer. The connections between neurons, known as synapses, are

characterized by their weights, which determine the strength and direction of the

signal transmitted. A perceptron is the simplest form of an ANN, consisting of a

single layer of weighted inputs and an activation function, and is primarily used for

binary classification tasks. The activation function transforms the input signal into

an output, which is then passed to subsequent layers in deeper networks. Training

an ANN involves optimizing the weights and biases to minimize prediction errors,

typically using algorithms such as gradient descent. The error is quantified by a

loss function, which measures the discrepancy between the predicted and actual

outputs. For binary classification, the most common loss function is the binary
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cross-entropy (log-loss):

Loss = − 1

N

N∑
i=1

[yi log(p(yi)) + (1− yi) log(1− p(yi))] , (2.12)

where yi is the true class label, p(yi) is the predicted probability for class 1, and

N is the number of data points. Through iterative optimization, ANNs adjust

their parameters to learn complex mappings from inputs to outputs, making them

highly effective for a wide range of tasks, including classification, regression, and

pattern recognition.

2.6.4. Logistic Regression

Logistic regression is a fundamental statistical method used for binary classi-

fication, where the goal is to predict the probability that a given input belongs to

one of two possible classes (typically labeled as 0 and 1) (Bishop, 2006). Unlike

linear regression, which predicts continuous outcomes, logistic regression predicts

probabilities constrained to the interval [0, 1].

The model assumes that the log-odds (logit) of the probability of the positive

class is a linear function of the input features:

logit(P (Y = 1 | X)) = log

(
P (Y = 1 | X)

1− P (Y = 1 | X)

)
= β0 + β1x1 + · · ·+ βnxn (2.13)

To map the log-odds to a probability, the logistic (sigmoid) function is applied:

σ(z) =
1

1 + e−z
(2.14)

where z = β0 +
∑n

i=1 βixi. Thus, the predicted probability that Y = 1 given X is:

P (Y = 1 | X) =
1

1 + e−(β0+
∑n

i=1 βixi)
(2.15)

Parameter Estimation: The parameters β0, β1, . . . , βn are estimated using

Maximum Likelihood Estimation (MLE). The likelihood function for N indepen-
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dent observations is:

L(β) =
N∏
i=1

P (yi | xi) =
N∏
i=1

[σ(zi)]
yi [1− σ(zi)]

1−yi (2.16)

where zi = β0 +
∑n

j=1 βjxij. The log-likelihood, which is easier to maximize, is:

`(β) =
N∑
i=1

[yi log σ(zi) + (1− yi) log(1− σ(zi))] (2.17)

Optimization algorithms such as gradient descent or Newton-Raphson are used

to find the parameter values that maximize the log-likelihood. After fitting the

model, predictions are made by thresholding the predicted probability. For exam-

ple, if P (Y = 1 | X) > 0.5, the instance is classified as class 1; otherwise, it is

classified as class 0. The coefficients βj represent the change in the log-odds of the

outcome for a one-unit increase in the corresponding feature xj, holding all other

features constant.

2.6.5. Random Forest

A decision tree is a hierarchical model that recursively splits data based on

feature values to make predictions (Breiman, 2001). While decision trees are

intuitive and interpretable, a single tree is prone to overfitting, performing well on

training data but generalizing poorly to unseen data. Random Forest addresses

this limitation by constructing an ensemble of decision trees and aggregating their

predictions, thereby improving both accuracy and robustness.

Given a dataset D = {(xi, yi)}mi=1 with m training samples, where xi ∈ Rn is an

n-dimensional feature vector and yi is the target variable, Random Forest builds an

ensemble of T trees. Each tree is trained on a bootstrap sample (random sampling

with replacement) of the original data. At each split within a tree, only a randomly

selected subset of features is considered, which introduces additional diversity

among the trees. For classification, the final prediction is made by majority voting:

ŷ = argmax
c

T∑
t=1

I(ht(x) = c), (2.18)
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where ht(x) is the prediction of the t-th tree and I is the indicator function. For

regression, the predictions are averaged:

ŷ =
1

T

T∑
t=1

ht(x). (2.19)

The Random Forest algorithm proceeds as follows:

1. Draw T bootstrap samples from the training data.

2. For each sample, grow a decision tree:

• At each node, select a random subset of features.

• Determine the best split among the selected features.

• Recursively grow the tree until a stopping condition is met.

3. Aggregate the predictions from all trees:

• Use majority voting for classification.

• Use averaging for regression.

Common stopping conditions include limiting the maximum tree depth and speci-

fying a minimum number of samples required to split a node. Limiting tree depth

helps control overfitting and computational cost, while setting a minimum sample

size prevents splits on small, potentially noisy subsets of data.

2.7. Stacked Ensemble Learning

Stacked Ensemble Learning, or stacking, is a meta-learning technique that

combines the predictions of multiple base models to enhance predictive perfor-

mance (Wolpert, 1992). Unlike traditional ensemble methods such as bagging

and boosting, which aggregate predictions through averaging or weighted voting,

stacking introduces a higher-level model, known as a meta-learner, to learn how

to best combine the outputs of diverse base models.

Given a dataset D = {(xi, yi)}mi=1, where xi ∈ Rn is an n-dimensional feature

vector and yi is the target variable, stacking proceeds as follows:
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1. Train multiple base models h1(x), h2(x), . . . , hK(x), each potentially using

different algorithms or hyperparameters.

2. For each instance, collect the predictions from all base models to form a new

feature vector.

3. Train a meta-learner g(·) on these new features to make the final prediction:

ŷ = g(h1(x), h2(x), . . . , hK(x)). (2.20)

The meta-learner can be any machine learning algorithm, such as linear regres-

sion, logistic regression, or another ensemble method. To prevent overfitting and

ensure unbiased meta-features, stacking typically employs cross-validation when

generating base model predictions. The standard procedure is as follows:

1. Split the training data into K folds for cross-validation.

2. For each base model, train on K − 1 folds and generate predictions on the

holdout fold. Repeat for all folds to obtain out-of-fold predictions for the

entire dataset.

3. Stack the out-of-fold predictions from all base models to create a new train-

ing set for the meta-learner.

4. Train the meta-learner on this new dataset using the original target labels.

5. For new data, obtain predictions from all base models and feed them into

the trained meta-learner to produce the final output.

Stacking leverages the complementary strengths of different models, often resulting

in improved generalization and predictive accuracy compared to any single model.

2.8. Performance Metrics

To evaluate the performance of the supervised models, we focus on three key

metrics: Positive Predictive Value (PPV), False Discovery Rate (FDR), and the

F1 Score. Each metric provides a distinct perspective on the model’s ability to
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distinguish between legitimate and fraudulent companies. A true positive (TP)

is defined as a legitimate company correctly classified as legitimate, while a true

negative (TN) is a fraudulent company correctly identified as fraudulent. These

correct predictions indicate the model’s effectiveness in recognizing legitimate and

fraudulent behavior.

Positive Predictive Value (PPV), also known as precision, measures the

proportion of positive predictions that are actually correct. In this context, it

answers the question: among all companies predicted as legitimate, how many are

truly legitimate? It is defined as:

PPV =
True Positives

True Positives + False Positives

False Discovery Rate (FDR) quantifies the proportion of positive predictions

that are incorrect, i.e., the fraction of companies incorrectly labeled as legitimate.

FDR is the complement of precision and is given by:

FDR =
False Positives

True Positives + False Positives

F1 Score provides a balance between precision and recall, making it especially

useful when both false positives and false negatives are important. The F1 Score

is the harmonic mean of precision and recall, and is calculated as:

F1 Score =
2× True Positives

2× True Positives + False Positives + False Negatives
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CHAPTER 3

METHODOLOGY

3.1. Raw Data

Figure 3.1 provides an overview of the datasets used in this study, which are

based on administrative tax data collected by the Bureau of Internal Revenue

(BIR) in the Philippines. The key components of the dataset are described below:

3.1.1. Summary List of Sales (SLS)

The SLS is a transaction-level report submitted quarterly by VAT-registered

businesses, detailing all sales of goods and services to other VAT-registered pur-

chasers. The specific columns extracted from this dataset are listed in Table A.1.

3.1.2. Summary List of Purchases (SLP)

The SLP is a transaction-level report submitted quarterly by VAT-registered

businesses, detailing all purchases of goods and services from VAT-registered sup-

pliers. The relevant columns extracted from this dataset are outlined in Table A.2.

3.1.3. VAT Returns

VAT returns are aggregated reports, typically filed monthly or quarterly, by

VAT-registered businesses. These reports summarize VAT collected from sales

(output VAT) and VAT paid on purchases (input VAT). The net difference de-

termines the VAT payable to or refundable from the BIR. The columns extracted

from this dataset are shown in Table A.3.

3.1.4. Industry Classification

This dataset provides a standardized code or category identifying the type of

economic activity a taxpayer is engaged in. The classification follows the BIR’s
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Figure 3.1: Summary of datasets used in fraud detection and association analysis

adopted scheme, which is generally aligned with the Philippine Standard Industry

Classification (PSIC), and is used for segmentation and compliance monitoring.

For data preprocessing and feature extraction, we utilized NumPy and Pandas,

which provided efficient tools for handling and manipulating large datasets. These

libraries facilitated data cleaning, transformation, and organization. For feature

engineering and model development, we used Scikit-learn, TensorFlow, DMLC

XGBoost, and MLxtend. Scikit-learn and XGBoost were primarily used for build-

ing machine learning models, while TensorFlow enabled the implementation of

deep learning models. MLxtend was employed to enhance model performance

through techniques such as stacking and ensemble learning.

3.2. Aggregated Dataset for Fraud Classification

The four raw datasets (SLS, SLP, VAT Returns, and Industry Classification)

were aggregated by owner_tin, tax_year, and qtr. This aggregation provides the

total taxable sales and purchases per taxpayer per year and quarter, which are

then merged with the VAT returns dataset. The resulting dataset contains aggre-

gated values for taxable sales, purchases, and VAT payable for each owner_tin,

tax_year, and qtr.
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3.3. Aggregated Dataset for Association Mining

For association mining, the transaction-level datasets (SLS and SLP) were

aggregated by owner_tin and the ratio of pur_tin/sel_tin. Here, pur_tin and

sel_tin are redefined as counterparty_tin. This aggregation results in a dataset

of transaction TIN pairs, which serves as the basis for association rule mining.

3.4. Ratio Calculation

Given the aggregated dataset for fraud classification, the following ratios were

computed:

3.4.1. Sales-to-Purchases and Purchases-to-Sales

The Sales-to-Purchases and Purchases-to-Sales ratios are calculated using the

aggregate sales and aggregate purchases for a given owner TIN, tax year, and

quarter:

Sales-to-Purchasesi,y,q =
Salesi,y,q

Purchasesi,y,q
(3.1)

Purchases-to-Salesi,y,q =
Purchasesi,y,q

Salesi,y,q
(3.2)

where i denotes the owner TIN, y the tax year, and q the quarter of filing.

3.4.2. Sales-to-VAT and VAT-to-Sales

The Sales-to-VAT and VAT-to-Sales ratios are calculated using aggregate sales

and VAT for each owner TIN, tax year, and quarter:

Sales-to-VATi,y,q =
Salesi,y,q
VATi,y,q

(3.3)

VAT-to-Salesi,y,q =
VATi,y,q

Salesi,y,q
(3.4)



29

3.4.3. Purchases-to-VAT and VAT-to-Purchases

The Purchases-to-VAT and VAT-to-Purchases ratios are calculated using ag-

gregate purchases and VAT for each owner TIN, tax year, and quarter:

Purchases-to-VATi,y,q =
Purchasesi,y,q

VATi,y,q

(3.5)

VAT-to-Purchasesi,y,q =
VATi,y,q

Purchasesi,y,q
(3.6)

In all cases, i refers to the owner TIN, y to the tax year, and q to the quarter of

filing.

3.5. Growth Rate Calculation

To analyze growth trends, the following growth rates were computed from the

aggregated dataset:

3.5.1. Year-on-Year Sales, Purchases, and VAT Growth

The year-on-year growth rate measures the relative change in aggregate sales,

purchases, or VAT for a given quarter compared to the same quarter in the previous

year:

Year-on-Year Growthx,i,y,q =
xi,y,q

xi,y−1,q

(3.7)

where x denotes the feature of interest (e.g., Sales, Purchases, VAT), i the owner

TIN, y the tax year, and q the quarter.

3.5.2. Quarter-on-Quarter Sales, Purchases, and VAT Growth

The quarter-on-quarter growth rate measures the relative change in aggregate

sales, purchases, or VAT for a given quarter compared to the previous quarter:

Quarter-on-Quarter Growthx,i,y,q =


xi,y,1

xi,y−1,4

if q = 1

xi,y,q

xi,y,q−1

if q > 1

(3.8)
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where x denotes the feature of interest, i the owner TIN, y the tax year, and q the

quarter of filing.

3.6. Standardization using a Modified Z-Score Formula

Standardization is the process of transforming feature values so that they follow

a standard normal distribution (mean 0 and standard deviation 1). This transfor-

mation was applied to features with continuous or floating-point data types. The

standard score, denoted by Z, is computed as:

Zi =
xi − x̄

s
(3.9)

where xi is the observed value, x̄ is the sample mean, and s is the sample standard

deviation, defined as:

x̄ =
1

n

n∑
i=1

xi, s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (3.10)

However, due to the presence of extreme outliers in the data, a robust stan-

dardization approach was also used. The modified Z-score, denoted by mZ, is

calculated as:

mZi =
xi − x̃

MAD
(3.11)

where x̃ is the median of the feature and MAD is the Median Absolute Deviation:

x̃ = med(xi), MAD = med(|xi − x̃|) (3.12)

Standardization was performed in two ways:

1. Company-specific: Standardization based on the historical values of the

same company, enabling detection of intra-firm anomalies.

2. Industry-specific: Standardization based on the historical values of all

companies within the same industry, enabling detection of deviations from

industry norms.
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3.6.1. Company-Specific Standardization

For each company, the modified Z-score for feature x in year y and quarter q

is:

mZx,i,y,q =
xi,y,q − x̃i

MADx,i

(3.13)

where i is the owner TIN, x̃i and MADx,i are the median and median absolute

deviation of feature x for company i.

3.6.2. Industry-Specific Standardization

For each industry, the modified Z-score for feature x in year y and quarter q

is:

mZx,j,y,q =
xj,y,q − x̃j

MADx,j

(3.14)

where j is the industry code, and x̃j and MADx,j are the median and median

absolute deviation of feature x for industry j.

3.6.3. Features Subjected to Standardization

The following features were standardized using the approaches above:

• Aggregates: Total Sales, Purchases, VAT

• Ratios: Sales-to-Purchases, Purchases-to-Sales, Sales-to-VAT, VAT-to-Sales,

Purchases-to-VAT, VAT-to-Purchases

• Growth Rates: Year-on-year and quarter-on-quarter growth rates for Sales,

Purchases, and VAT

3.7. Final Extracted Features

The following features were extracted from the BIR dataset for statistical anal-

ysis and modeling:

• Aggregates: Standardized Total Sales, Purchases, and VAT (company-

specific)
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• Ratios: Standardized ratios (company- and industry-specific)

• Growth Rates: Standardized year-on-year and quarter-on-quarter growth

rates (company- and industry-specific)

• Benford Analysis: Benford conformity measures and scores for Sales, Pur-

chases, and VAT

• Boolean Indicators: Presence of VAT penalties, amended VAT returns

• Exogenous Features: Industry code, industry classification

3.8. Dimensionality Reduction using PCA

To improve computational efficiency and reduce feature redundancy, Principal

Component Analysis (PCA) was applied. PCA transforms the standardized fea-

tures into orthogonal principal components, which are linear combinations of the

original features and are ordered by the variance they explain. By retaining only

the top components, the dimensionality of the dataset is reduced, collinearity is

minimized, and noise is suppressed, resulting in a more compact and informative

representation for downstream modeling.

3.9. Model Pipeline

An overview of the model pipeline is shown in Figure 3.2. Due to the limited

availability of labeled data, a pseudolabeling approach was adopted. Unsuper-

vised models (Isolation Forest, SVM, k-means Clustering) were first applied to

the labeled subset to identify patterns associated with legitimate and fraudulent

transactions. The outputs were cross-referenced with known labels to interpret

the groupings. These unsupervised models were then used to generate pseudola-

bels for the unlabeled data, which were subsequently used as ground truth for

training supervised models (Logistic Regression, Random Forest, XGBoost, and

ANNs). A stacked ensemble learning approach was also implemented to com-

bine the strengths of individual models. Hyperparameters were tuned iteratively,

and model performance was evaluated on a separate test set. Note that the use of
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Figure 3.2: Overview of methodology

pseudolabels may introduce compounded errors, potentially affecting classification

accuracy.

In parallel, Apriori Association Rule Mining was conducted to detect frequently

occurring patterns and relationships among entities involved in suspicious transac-

tions. The algorithm identifies item combinations exceeding a minimum support

threshold, eliminates infrequent patterns, and generates interpretable “if-then”

rules that satisfy confidence and lift criteria. This process uncovers hidden net-

works of related parties, such as individuals or companies linked to ghost receipts

or suspicious intercompany activities.

Finally, outputs from both the supervised classification models and association

rule mining were integrated into a risk assessment system. Each company was

classified using a traffic light model with three levels: low, medium, and high

risk of tax fraud. Specifically, a company is flagged as high risk if identified as

fraudulent by both the classification model and association rules; medium risk if

flagged by only one method; and low risk if neither method indicates fraudulent

behavior. This integrated approach provides a robust framework for identifying

and prioritizing potentially fraudulent activity within the dataset.
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CHAPTER 4

RESULTS AND DISCUSSION

This section presents and interprets the results from the unsupervised learning

models, supervised learning models, and association rule mining. The goal is to

extract actionable insights and highlight the strengths and limitations of each

approach.

4.0.1. Unsupervised Learning

Tables 4.1, 4.3, and 4.5 summarize the confusion matrices for Isolation Forest,

SVM, and k-means, respectively. The corresponding outputs on the full dataset

(labeled and unlabeled) are shown in Tables 4.2, 4.4, and 4.6.

The confusion matrices for the Isolation Forest, SVM, and k-means models

are presented in Tables 4.1, 4.3, and 4.5, respectively, with their corresponding

outputs on both labeled and unlabeled data shown in Tables 4.2, 4.4, and 4.6.

Among these models, the Isolation Forest demonstrated the most effective separa-

tion between fraudulent and legitimate entities. Specifically, Cluster B identified

by the Isolation Forest contained exclusively fraudulent cases (100%), while Clus-

ter A comprised a majority of legitimate entities (60%), though with some overlap.

This clear delineation suggests that the Isolation Forest is particularly adept at

isolating high-risk, potentially fraudulent entities, making it a valuable tool for

audit prioritization.

In contrast, both the SVM and k-means models failed to achieve meaningful

separation. The SVM produced clusters with similar class distributions, each

containing approximately 60% fraudulent entities, which undermines its utility

for distinguishing between classes. The k-means model, while producing a cluster

(A) composed entirely of fraudulent entities, still resulted in significant overlap

in Cluster B, which contained 60% fraudulent cases. This limited discriminative

power is likely influenced by class imbalance in the dataset, where fraudulent cases
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Isolation Forest Clusters
Type A B

Legitimate 227 (60%) 0 (0%)
Fraudulent 155 (40%) 259 (100%)

Table 4.1: Confusion matrix for Isolation forest on data with known labels

Isolation Forest Clusters
Type A B
Total 2,679 2,680

Percentage 50% 50%

Table 4.2: Isolation forest output on labeled and unlabeled data

outnumber confirmed legitimate ones.

When the Isolation Forest was applied to the full unlabeled dataset, it pro-

duced an almost even split between Clusters A and B. While this result may not

reflect the true underlying distribution of legitimate and fraudulent entities, the

model’s ability to isolate a pure fraudulent cluster remains valuable for generating

pseudolabels. Importantly, these pseudolabels are used only as an intermediate

step for training supervised models, so any imperfections in clustering do not di-

rectly propagate to final predictions. Given its relative strength in distinguishing

between classes, the Isolation Forest was selected as the basis for pseudolabel gen-

eration, supporting a more robust downstream supervised learning process and

enabling more targeted audit strategies.

4.0.2. Supervised Learning

Tables 4.10 to 4.17 present the confusion matrices for Logistic Regression,

Random Forest, XGBoost, and Artificial Neural Networks on both training and

testing splits. While training set results provide context for model behavior and

potential overfitting, model selection is ultimately based on performance on the

testing set, as this best reflects generalization to unseen data.

Among the evaluated models, XGBoost achieved the highest test accuracy at

95%, closely followed by the ANN and Random Forest models. Logistic Regression

performed notably worse, with an accuracy of 87%. Both XGBoost and Random

Forest attained perfect accuracy on the training set, which may indicate over-
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SVM Clusters
Type A B

Legitimate 86 (39%) 141 (34%)
Fraudulent 136 (61%) 278 (66%)

Table 4.3: Confusion matrix for SVM on data with known labels

SVM Clusters
Type A B
Total 4,900 459

Percentage 91% 9%

Table 4.4: SVM output on labeled and unlabeled data

fitting, a common trait of tree-based models that are highly expressive and can

capture complex patterns, sometimes at the expense of generalization. Address-

ing this overfitting in future work could involve expanding the dataset or applying

regularization techniques such as early stopping or dropout. Interestingly, both

the ANN and Logistic Regression models exhibited higher accuracy on the test set

than on the training set, which is counterintuitive since models typically perform

better on data they have already seen. This anomaly may be due to the relatively

small sample size or the lack of a dedicated validation set for hyperparameter tun-

ing, suggesting that further optimization and a more robust validation strategy

could unlock additional performance.

Table 4.7 summarizes the key performance metrics: Positive Predictive Value

(PPV), False Discovery Rate (FDR), and F1 score for each supervised model on

both the training and testing sets. These metrics provide a nuanced view of each

model’s strengths and limitations beyond simple accuracy. Both Random Forest

and XGBoost achieved perfect precision (PPV) and F1 scores on the training set,

which is a strong indicator of potential overfitting, as these models may be captur-

ing noise specific to the training data. However, on the test set, XGBoost slightly

outperformed Random Forest, achieving a higher PPV (87.96% vs. 85.59%) and

F1 score (93.60% vs. 92.23%), while also maintaining the lowest FDR (12.04%).

The ANN model also demonstrated strong generalization, with test set metrics

nearly matching those of XGBoost (PPV of 87.85%, FDR of 12.15%, and F1 score

of 93.07%). This suggests that both XGBoost and ANN are robust to overfitting
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k-means Clusters
Type A B

Legitimate 0 (0%) 227 (37%)
Fraudulent 30 (100%) 384 (63%)

Table 4.5: Confusion matrix for k-means on data with known labels

k-means Clusters
Type A B
Total 31 5,328

Percentage 1% 99%

Table 4.6: k-means output on labeled and unlabeled data

and are able to generalize well to unseen data. Logistic Regression, while show-

ing improvement from training to testing, lagged behind the other models with a

lower PPV (74.79%) and F1 score (83.18%) on the test set. This reinforces its rel-

ative weakness for this task, likely due to its limited capacity to capture complex,

nonlinear relationships in the data.

Lastly, we explored the use of ensemble learning to combine the strengths of

individual models in hopes of improving overall performance by mitigating their

respective weaknesses. However, as shown in Tables 4.15 and 4.9, the ensemble

model and the XGBoost model yielded identical performance. Given this result,

we selected XGBoost as the final model due to its simplicity and parsimony, offer-

ing equivalent accuracy without the added complexity of an ensemble approach.

Overall, these results support the selection of XGBoost as the final model. It con-

sistently delivered the best balance between training and test performance across

all evaluated metrics, offering high precision, low false discovery, and strong over-

all classification ability. Although ensemble learning was explored to potentially

combine the strengths of individual models, it did not yield any improvement over

XGBoost alone. Therefore, XGBoost was chosen for its simplicity, parsimony, and

superior performance without the added complexity of an ensemble approach.

4.0.3. Association Rule Mining

The Apriori algorithm identified a total of 77 association rules involving 76

unique TINs and various features. The extracted rules exhibited lift values ranging
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Train Test
Score PPV FDR F1 PPV FDR F1

Logistic Regression 62.98% 37.02% 52.61% 74.79% 25.21% 83.18%
Random Forest 100% 0% 100% 85.59% 14.41% 92.23%

XGBoost 100% 0% 100% 87.96% 12.04% 93.60%
ANN 97.67% 2.33% 93.43% 87.85% 12.15% 93.07%

Table 4.7: Accuracy metrics for the supervised models

Ensemble Predictions
Type 0 1

0 2,524 0
1 0 2,835

Table 4.8: Confusion matrix for
stacked ensemble on training split

Ensemble Predictions
Type 0 1

0 95 0
1 0 167

Table 4.9: Confusion matrix for
stacked ensemble on testing split

from 1.51 to 223.96, indicating varying degrees of association strength. Notably,

28 of these rules directly involve known fraudulent companies, and 28 distinct

companies were found to be associated with these fraudulent entities.

A closer examination of the rules reveals several key insights:

• Rule Coverage: The 77 rules collectively cover a significant portion of the

dataset, highlighting patterns of co-occurrence among TINs and features.

• Fraudulent Associations: Of the 77 rules, 28 specifically link TINs to

known fraudulent companies, suggesting potential risk propagation through

these associations.

• Lift Values: The lift values for all rules exceed 1, with the highest reaching

223.96. This indicates that the co-occurrence of items in these rules is much

higher than would be expected by chance, signifying strong associations.

The interpretation of lift values is as follows:

• Lift > 1: Items in the rule appear together more frequently than expected

if they were independent, indicating a positive association.

• Lift = 1: Items co-occur as often as expected by chance, implying no

association.
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Logistic Predictions
Type 0 1

0 1,140 1,384
1 670 2,165

Table 4.10: Confusion matrix for lo-
gistic regression on training split

Logistic Predictions
Type 0 1

0 89 6
1 30 150

Table 4.11: Confusion matrix for lo-
gistic regression on testing split

Random Forest Predictions
Type 0 1

0 2,524 0
1 0 2,835

Table 4.12: Confusion matrix for
random forest on training split

Random Forest Predictions
Type 0 1

0 95 0
1 16 164

Table 4.13: Confusion matrix for
random forest on testing split

• Lift < 1: Items appear together less frequently than expected, suggesting

a negative association.

Since all discovered rules have lift values greater than 1, it can be concluded

that the identified associations are statistically significant. In particular, TINs

associated with known fraudulent companies are much more likely to be involved

in fraudulent activity themselves. This highlights the effectiveness of association

rule mining in uncovering hidden relationships and potential risk factors within

the dataset.

4.0.4. Integrated Risk Assessment and Decision Matrix

By combining the outputs of the classification model and association rule min-

ing, a comprehensive risk assessment system was developed (see Figure 4.1). This

system classifies each company into low, medium, or high risk: high risk if flagged

as fraudulent by both the classification model and association rules, medium risk

if flagged by either method, and low risk if not flagged by either. High-risk entities

should be prioritized for immediate audit and enforcement actions, medium-risk

entities warrant monitoring and potential follow-up, and low-risk entities can be

deprioritized, allowing resources to be focused where they are most needed.

Applying this framework to our testing set, the results are as follows:

• High Risk: 3 companies were flagged as fraudulent by both the supervised

classification model and association rule mining. These entities represent
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XGBoost Predictions
Type 0 1

0 2,524 0
1 0 2,835

Table 4.14: Confusion matrix for
XGBoost on training split

XGBoost Predictions
Type 0 1

0 95 0
1 13 167

Table 4.15: Confusion matrix for
XGBoost on testing split

ANN Predictions
Type 0 1

0 2,260 264
1 54 2,781

Table 4.16: Confusion matrix for
ANNs on training split

ANN Predictions
Type 0 1

0 94 1
1 13 167

Table 4.17: Confusion matrix for
ANNs on testing split

the highest priority for intervention.

• Medium Risk: 140 companies were predicted as fraudulent by the clas-

sification model but were not linked to any fraudulent association rules.

Conversely, 173 companies were linked to fraud via association rules but

were predicted as legitimate by the classification model. Both groups fall

into the medium-risk category, indicating the need for further monitoring or

investigation.

• Low Risk: The remaining companies in the testing set were not flagged by

either method and are thus classified as low risk.

By focusing enforcement and monitoring efforts according to this traffic light

model, resources can be allocated more efficiently and effectively.
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Figure 4.1: Decision matrix based on results of the classification model and the
association rules model
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CHAPTER 5

CONCLUSION

This study, conducted in collaboration with the BIR, developed a data-driven

framework to enhance the identification of entities for potential audit. By inte-

grating supervised and unsupervised machine learning techniques with association

rule mining, we aimed to automate and strengthen the BIR’s tax fraud detection

processes. Among the models evaluated, XGBoost demonstrated the highest out-

of-sample accuracy at 95%, making it the most suitable candidate for operational

deployment due to its strong predictive performance and interpretability. The

Isolation Forest model played a key role in generating pseudolabels for the unla-

beled dataset, enabling the extension of supervised learning to a broader set of

taxpayers and informing audit prioritization, despite some limitations in cluster

purity. Association rule mining further complemented these models by uncov-

ering interpretable patterns and relationships, supporting both automation and

transparency in decision-making.

Several limitations were encountered. The scarcity of labeled data constrained

the development of fully supervised models, making the reliability of predictions

dependent on the quality of pseudolabels. Data quality issues, such as missing

TINs that prevented the integration of certain external datasets, also limited the

scope for feature enrichment. Additionally, some evidence of overfitting in tree-

based models and suboptimal performance in simpler models like logistic regression

underscored the need for more comprehensive data and advanced tuning strategies.

Despite these challenges, the resulting traffic light risk assessment system offers a

practical and actionable tool for the BIR. By combining classification model out-

puts with interpretable association rules, the system provides clear, tiered signals

for audit prioritization, enabling more efficient allocation of enforcement resources.

With ongoing improvements in data integration, labeling, and model refinement,

this approach has strong potential to further support the BIR’s efforts to enhance
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tax compliance and reduce fraud at scale.

5.1. Recommendations for Further Work

To enhance the performance of supervised models, the BIR should prioritize

expanding and improving its labeled datasets. The accuracy and robustness of

these models are highly dependent on both the quality and quantity of labeled

data, particularly for legitimate entities. Investing in the systematic creation and

verification of comprehensive labels will enable the development of models with

stronger generalization capabilities. Given the current reliance on pseudolabels,

future work should also focus on refining pseudolabel generation methods. This

could involve exploring advanced unsupervised or semi-supervised techniques, such

as self-training, confidence-based thresholding, or generative approaches, to reduce

labeling errors and increase the reliability of the training data.

Improved data integration across agencies is also essential. The inability to

merge certain datasets, such as those from the Securities and Exchange Commis-

sion, due to missing Tax Identification Numbers limited the scope of analysis.

Establishing robust data-matching systems and formalizing data-sharing agree-

ments between agencies will help ensure more comprehensive and unified datasets

for future studies. Additionally, addressing data quality issues such as inconsis-

tent formatting, missing values, and unstructured entries is critical. Strengthening

data cleaning processes and standardizing formats across BIR systems will provide

higher-quality inputs for modeling.

To mitigate overfitting, particularly in tree-based models, regularization tech-

niques such as early stopping, pruning, and careful feature selection should be

employed. Access to larger and more diverse datasets will further help models

learn patterns that generalize well. Moreover, the absence of a dedicated vali-

dation set hindered effective model tuning. Implementing a process to reserve a

portion of the data for validation, even when labeled data is scarce, will facilitate

better hyperparameter optimization and reduce the risk of overfitting.
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APPENDIX A

COLUMNS EXTRACTED FROM DATASET

Column Data Type Description Sparse

owner_tin int Taxpayer identification number (TIN) of the filing company No
pur_tin int TIN of the counterparty, i.e. the company that purchased goods

and services from the filing company
Yes

tax_year int Tax year of when the transaction was filed No
qtr int Quarter of when the transaction was filed No
sls_taxable_sales float Taxable sales amount per transaction No

Table A.1: Columns extracted from the summary list of sales



48

Column Data Type Description Sparse

owner_tin int Taxpayer identification number (TIN) of the filing company No
pur_tin int TIN of the counterparty, i.e. the company that purchased goods

and services from the filing company
Yes

tax_year int Tax year of when the transaction was filed No
qtr int Quarter of when the transaction was filed No
sls_taxable_sales float Taxable sales amount per transaction No

Table A.2: Columns extracted from the summary list of purchases

Column Data Type Description Sparse

owner_tin int Taxpayer identification number (TIN) of the filing company No
tax_year int Tax year of when the transaction was filed No
qtr int Quarter of when the transaction was filed No
amended_yn boolean Indicator whether the VAT return filing was amended/revised by

the filing company after initial submission
No

penalties boolean Indicator whether the filing company was penalized due to filing
violations (noncompliance, late submission, etc)

No

net_payable float Net VAT payable by the filing company for the specific tax year
and quarter

No

Table A.3: Columns extracted from the VAT returns data
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APPENDIX B

ASSOCIATION RULES RESULTS
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Table B.1: Association rules with the 10 highest lift values

antecedents consequents antecedent support consequent support support confidence lift
{390718} {10240063} 0.00179 0.00301 0.00120 0.67347 223.96
{10240063} {390718} 0.00301 0.00179 0.00120 0.40000 223.96
{8214619} {298393} 0.00171 0.01042 0.00166 0.96809 92.86
{298393} {8214619} 0.01042 0.00171 0.00166 0.15909 92.86
{298393} {8182020} 0.01042 0.00326 0.00231 0.22203 68.06
{8182020} {298393} 0.00326 0.01042 0.00231 0.70950 68.06
{298393} {9872871} 0.01042 0.00264 0.00171 0.16434 62.19
{9872871} {298393} 0.00264 0.01042 0.00171 0.64828 62.19
{8182079} {298393} 0.00503 0.01042 0.00219 0.43478 41.71
{298393} {8182079} 0.01042 0.00503 0.00219 0.20979 41.71
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