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Abstract

This work studies the optimal portfolio selection problem for an investor with a power utility
function in a continuous-time market consisting of a risk-free bond and a risky stock. The investor
seeks to maximize the expected utility of terminal wealth by dynamically allocating investments
between the two assets. The problem is formulated through a Hamilton–Jacobi–Bellman equa-
tion, which is then solved numerically. We develop a finite difference scheme that maximizes the
use of central differencing for improved accuracy, switching to forward or backward differenc-
ing only when needed to maintain stability. Boundary conditions are carefully treated to ensure
realistic behavior at extreme wealth levels.
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1 Problem Setup
Consider a financial market containing two financial assets that are traded continuously on a finite
horizon [0, T ]. The first asset is a risk-free bond P that evolves according to the following ordinary
differential equation

dPt = rPtdt, t ∈ [0, T ], (1)

where r is a risk-free rate. The second asset ia risky stock that evolves according to the following
stochastic differential equation

dSt = µStdt+ σStdWt, t ∈ [0, T ] (2)

where µ ∈ R is a constant drift term, σ ≥ 0 is a constant volatility term, and Wt is a standard
Brownian motion.

The investor is interested in determining an efficient strategy for her final wealth. Define the
wealth process Xt, at any time t < T , the investor needs to decide what proportion ut of her wealth
to invest in the risky asset St and invest the remaining proportion 1 − ut to the risk-free bond. The
wealth process must evolve according to the following stochastic differential equation

dXt = utXt
dSt

St

+ (1− ut)Xtrdt

= utXt(µdt+ σdWt) + (1− ut)Xtrdt

= utXtµdt+ utXtσdWt +Xtrdt− utXtrdt

= [r + ut(µ− r)]Xtdt+XtutσdWt.

(3)

Assume that the initial wealth is positive i.e. X0 = x0 > 0. The investor is interested in finding an
optimal investment strategy u∗

t such that the expected utility of the terminal wealth XT is maximized.
The objective function is given by,

max
u(·)∈A

E[U(Xu
T )]. (4)
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Here, A is the set of admissible controls if the investor had an initial endowment of x0, and U(x) is
a utility function that is strictly increasing and concave up. We apply the power utility function such
that the objective function becomes,

max
u(·)∈A

E
[
(Xu

T )
γ

γ

]
. γ ∈ (0, 1) (5)

By the martingale optimality principle and the verification theorem for Hamilton-Jacobi-Bellman
(HJB) equation for the Merton problem, the portfolio problem (4) can be evaluated by solving the
following HJB-equation

∂V
∂t

+max
ut∈A

{
[ut(µ− r) + r]Xt

∂V
∂x

+ 1
2
X2

t σ
2u2

t
∂2V
(∂x)2

}
= 0

V (T, x) = xγ

γ
.

(6)

2 Numerical Scheme for the HJB Equation
The PDE (6) can be written as, {

∂V
∂t

+max
ut∈A

{LuV } = 0

V (T, x) = xγ

γ
.

(7)

Here, 
LuV = a(Xt, ut)

∂2V
(∂x)2

+ b(Xt, ut)
∂V
∂x

a(Xt, ut) =
1
2
X2

t σ
2u2

t

b(Xt, u) = [r + ut(µ− r)]Xt.

(8)

L is the infinitesimal generator of the process. The domain of the PDE is Ω = {(t,Xt) ∈ [0, T ]×R}.

3 Boundary Conditions
In order to evaluate the HJB PDE numerically, boundary conditions need to be established. At the
boundary Xt = 0, the PDE reduces to

∂V

∂t
= 0 (9)

Furthermore, for large Xt, we make the assumption that the optimal control is u = 0. The intuition
for this assumption is that for a sufficiently large wealth, the marginal gain an investor generates from
investing in the risky asset is small compared to investing in the risk-free asset. The PDE (6) reduces
to

∂V

∂t
+ rXt

∂V

∂x
= 0. (10)

Define τ = T − t, the solution (See Appendix A) to the PDE above is given by,

V (T − τ, x) = δ2(τ)x2 + δ(τ)x, (11)

where,
δ(τ) = exp(rτ) (12)
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4 Finite Difference
The first step is to localize the PDE to a finite interval [0, Xmax]. Suppose that the price process can be
discretized into M nodes, and the time process can be discretized into N nodes. Define ∆x = Xmax

M−1

and ∆τ = T
N−1

,
xi = (i− 1)∆x, i = 1, 2, . . . ,M

τn = (n− 1)∆τ, n = 1, 2, . . . , N.
(13)

The values at each grid point is denotes as V n
i = V (τn, xi). The infinitisimal generator LuV can be

approximated as,
(Lu

∆xV )i = αiVi−1 + βiVi+1 − (αi + βi)Vi. (14)

The PDE (6) can be approximated using an explicit timestepping as,

V n+1
i − V n

i

∆t
+max

ut∈R
[(Lu

∆xV
n)i] = 0

V n+1
i − V n

i

∆t
+ αn

i V
n
i−1 + βn

i V
n
i+1 − (αn

i + βn
i )V

n
i = 0

(15)

From (8), note that a(Xt, u) is always positive, while b(Xt, u) is not always positive. When either αi

or βi is negative, oscillations may appear in the numerical solution. The numerical scheme presented
involves the maximal use of central differences to improve the convergence rate and accuracy. In
cases that either αi or βi is negative, we adopt forward or backward differences to ensure that the new
coefficient is positive. The central difference is given by,

αn
i,central =

a(xi, u
n)

∆x2
− b(xi, u

n)

2∆x

βn
i,central =

a(xi, u
n)

∆x2
+

b(xi, u
n)

2∆x

(16)

If αn
i,central < 0, we apply a forward difference to ∂V

∂x
,

αn
i,forward =

a(xi, u
n)

∆x2

βn
i,forward =

a(xi, u
n)

∆x2
+

b(xi, u
n)

∆x
.

(17)

If βn
i,central < 0, we apply a backward difference to ∂V

∂x
,

αn
i,backward =

a(xi, u
n)

∆x2
− b(xi, u

n)

∆x

βn
i,backward =

a(xi, u
n)

∆x2

(18)

More detail is provided in Appendix B.

5 Numerical Algorithm
Define the matrix,

An (un) =



− (αn
1 + βn

1 ) βn
1

αn
2 − (αn

2 + βn
2 ) βn

2
. . . . . . . . .

αn
M−2 −

(
αn
M−2 + βn

M−2

)
βn
M−2

αn
M−1 −

(
αn
M−1 + βn

M−1

)
0 0 . . . 0


.
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Then,
(Lu

∆xV )i = αiVi−1 + βiVi+1 − (αi + βi)Vi

= [An (un)V n]i.
(19)

Define the boundary condition vector Gn = [0, 0, . . . , 0, Gn
M ], where the entries are populated using

the equation for the boundary condition for large Xt,

V (T − τ, xmax) = δ(τ)x2
max + δ(τ)xmax

→V (t, xmax) = δ(T − t)x2
max + δ(T − t)xmax

(20)

such that
GM

u := V (n∆t, xmax)

= δ(T − n∆t)x2
max + δ(T − n∆t)xmax

(21)

Then the discretized PDE (15) can be written in terms of the control vector un

V n+1
i − V n

i

∆t
+max

ut∈R
[LuV n]i = 0

V n+1
i − V n

i

∆t
+ [An (un)V n]i = 0

V n+1
i − V n

i + An (un)V n∆t = 0

[I − An(un)∆t]V n = V n+1 + (Gn+1 −Gn)

(22)

Here, (Gn+1 −Gn) enforces the boundary condition at xmax.

6 Simulation
The scheme described above is implemented in Python with the following parameter values:

• r = 0.03

• µ = 0.02

• σ = 0.15

• T = 20.0

• γ = 0.5

• xmax = 5.0

• M = 100

• N = 1600

• Umax = 1

A plot of the value function V (Xt, t) versus the wealth process Xt and a plot of the optimal control
u against wealth Xt derived from the numerical scheme above is presented below:
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The first result is a plot of the value function V (x0, t = 0) against initial wealth. It shows that
V (x0, t = 0) starts at zero and increases in a concave way as wealth grows, which matches the
behavior we expect from CRRA utility. Since the risk aversion parameter is γ = 0.5, the investor
is relatively risk-tolerant. This means utility rises quickly with small increases in wealth but flattens
out as wealth becomes larger because of diminishing marginal utility. The second plot shows the
optimal proportion of wealth to invest in the risky asset. When wealth is very low (x = 0), there is
no investment because there is nothing to invest. As wealth rises to x = 1 or x = 2, the investor
becomes aggressive, taking on more risk to build capital. From x = 2 to x = 5, the investment in the
risky asset gradually decreases as the investor becomes more cautious. Finally, at high wealth levels
(x = 5), the control drops back to zero, showing that the investor prefers to hold wealth safely in the
risk-free asset.
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A Solution to the PDE (Appendix A)
Assume that the solution to the PDE is given by,

V (T − τ,Xt) = δ2(τ)X2
t + δ(τ)Xt (23)

where
δ(τ) = exp(rτ). (24)

It follows that
∂V

∂t
=

∂V

∂τ

∂τ

∂t

= −∂V

∂τ
= −2r exp(2rτ)X2

t − r exp(rτ)Xt

(25)

Also,

rXt
∂V

∂Xt

= rXt(2Xtδ(τ) + δ(τ))

= rXt(2Xt exp(2rτ) + exp(rτ))

= 2r exp(2rτ)X2
t + r exp(rτ)Xt.

(26)

Hence,

∂V

∂t
+ rXt

∂V

∂Xt

= −2r exp(2rτ)X2
t − r exp(rτ)Xt + 2r exp(2rτ)X2

t + r exp(rτ)Xt.

= 0.

(27)

Therefore, V (t,Xt) = δ(τ)X2
t + δ(τ)Xt is a solution to the PDE.
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B Discretization Scheme (Appendix B)
We discretize the operator LuV and derive the coefficients αn+1

i and βn+1
i ,

LuV = a(xt, ut)
∂2V

(∂x)2
+ b(xt, ut)

∂V

∂x
a(xt, ut) =

1

2
x2
tσ

2u2
t . (28)

Suppose we apply central differencing to ∂V
∂x

and ∂2V
(∂x)2

, then

∂V

∂x
≈ Vi−1 + Vi+1

∆x
∂2V

(∂x)2
≈ Vi−1 + Vi+1 − 2Vi

(∆x)2

(29)

Then, (28) results in,

LuV ≈ a(xt, ut)
Vi−1 + Vi+1 − 2Vi

(∆x)2
+ b(xt, ut)

Vi−1 + Vi+1

∆x
(30)

Matching the coefficient with (14) results in:

αiVi−1 + βiVi+1 − (αi + βi)Vi = a(xt, ut)
Vi−1 + Vi+1 − 2Vi

(∆x)2
+ b(xt, ut)

Vi−1 + Vi+1

∆x
(31)

For the above equation to hold,

αn
i,central =

a(xi, u
n)

∆x2
− b(xi, u

n)

2∆x

βn
i,central =

a(xi, u
n)

∆x2
+

b(xi, u
n)

2∆x

(32)

Suppose instead that αn
i,central < 0 and we apply forward difference to ∂V

∂x
, and central difference to

∂2V
(∂x)2

, then
∂V

∂x
≈ Vi+1 − Vi

∆x
∂2V

(∂x)2
≈ Vi+1 + Vi−1 − 2Vi

(∆x)2

(33)

Matching the coefficient with (14) results in:

αiVi−1 + βiVi+1 − (αi + βi)Vi = a(xt, ut)
Vi+1 + Vi−1 − 2Vi

(∆x)2
+ b(xt, ut)

∂V

∂x

Vi+1 − Vi

∆x
(34)

For the above equation to hold,

αn
i,forward =

a(xi, u
n)

∆x2

βn
i,forward =

a(xi, u
n)

∆x2
+

b(xi, u
n)

∆x
.

(35)

Suppose instead that βn
i,central < 0 and we apply backward difference to ∂V

∂x
, and central difference to

∂2V
(∂x)2

, then
∂V

∂x
≈ Vi − Vi−1

∆x
∂2V

(∂x)2
≈ Vi+1 + Vi−1 − 2Vi

(∆x)2

(36)

7



Matching the coefficient with (14) results in:

αiVi−1 + βiVi+1 − (αi + βi)Vi = a(xt, ut)
Vi+1 + Vi−1 − 2Vi

(∆x)2
+ b(xt, ut)

Vi − Vi−1

∆x
(37)

For the above equation to hold,

αn
i,backward =

a(xi, u
n)

∆x2
− b(xi, u

n)

∆x

βn
i,backward =

a(xi, u
n)

∆x2

(38)
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